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ABSTRACT 

The main objective of t his paper is t o study the potent ials of 

cr oss-spectrum and multiple cross-spectrum for the analysis of hydro­

logical data . 

Groups of precipitation and runoff stations were selected in dif­

f er ent cl i mati c environment and complete cros> spectral analyses were 

performed between those stations. The coherence and partial coherence 

functions were used for the study of f r equency corre l ati ons bet ween the 

series and they show t'hat there exists a very strong correlation between 

t he annual cycl es of t he stat i ons . Along the Pacific Coast of t he United 

States the annual cycl e in precipitation appears to be basically the same 

up to dis t ances of 1000 Km . 

Cyclic regression analysis with the use of the gain and phase func­

tions is shown to work correctl y in hydrol ogic time ser ies. This t ype 

of regression may be very useful in regi ons where frequency components 

account for a large percentage of the variance of the series . 

Cross - spectral characteristics of the moving average and aut or e ­

gressive processes arc shown to be a powerful tool in testing and analyz­

ing these types of generating processes in hydrology. Special si gnifi ­

cance has the coherence between two 1st order autoregressive processes 

which is shown t o be equal t o a constant independent of fr equency. 

The effect s of smoothing or pre-filtering in the cross-spect ral 

properties of two series are studied and recommendations made when work­

ing with this practi ce which is frequentl y used in hydrology . 

ix 



THE APPLICATION OF CROSS-SPECTRAL ANALYSIS TO HYDROLOGIC TIME SERIES 

by Ignacio Rodr{guoz - Iturbe* 

mAPTER I 

INTRODUCTION 

1. Signi f i cance of the Study. Many studies have 
been performed with regard to the spectral characteris­
tics of hydrologic data, but problems involving the 
simultaneous behavior of two or more series have not 
been worked on i n a wide varjety of fie l ds of appl ica­
tion, although enough has been done to point t he way 
and suggest the possibilities of hydrologic spectral 
analyses. 

There is an increasing number of problems in 
the geophysical sciences, which can be approached and 
solved by multiple regression analysis. They can also 
be effectively studied by multiple spectral techniques 
which are precise analogs of multiple regression in 
spirit and, if care is taken in choice, in the algebraic 
form of their basic equations (Tukey, 1961). The dif­
ferences which arise in the development stem from: 

(a) the fact t hat regression goes on sepa­
rately at each frequency, and 

(b) the fact that regression coefficients 
take complex values rather than real values, which 
enables one to l earn more about the underlying relation­
ship. 

In studying time series, as in its more clas­
sical situations, regression analysis is a more sensi ­
tive and powerful form of analysis than variance com­
ponent analysis whenever there is a suitable regression 
variable . As a consequence, one major reason for 
learning about spectrum analysis is a foundation for 
learning about cross-spectrum analysis (Tukey, 1961). 

2 . Main Objectives of This Study . The main 
objective of this study is to look into the possibili-

ties of t he still young techniques of cross-spectrum 
and multiple cross-spectrum for the anal ysis of hydro lo­
gic dat a. 

Two general approaches may be taken when 
analyzing int errel ations between hydrologic data. The 
first appr oach is to represent a given process by a 
multidimensional model and then study the characteris­
tics of this model, specifically the covariance and 
spectral matrices. The second approach is to consider 
each series as a realization of the process and study 
the interrelations between these realizations . Both 
approaches are considered here. 

Five specific aspects are specially stressed: 

(1) The use of the coherence and the partial 
coher ence (defined i n Chapt er II-3) as correl a t ion 
measures bet ween the different frequency components of 
hydrologic time series. Also, how these measures com­
pare with the cl assical time-domain met hods . 

(2) Frequency regression analysis of hydrolo­
gic time series by using the gain function (defined in 
Chapter III-1) as a regression coefficient at each 
frequency . 

(3) Potentials in using cross-spectral analy­
sis to s tudy input-output relat ionships in hydrologic 
systems . 

(4) Cross-spectral charact eristics of genera­
ting processes in common usage in hydrol ogy. 

(5) Effects of smoothing of time series on the 
coherence and phase functions between two series. 

*Assist ant Professor of Civil Engineering , Univcrsidad d(•l Zulia , Nar;a·a t b .. , Vt•tll'l.lh'la. 



CHAPTER II 

GENERAL MATHEMATICAL TECHNIQUES FOR CROSS-SPECTRAL ANALYSIS 

1. Stationary Random Processes A random process 
[xk (t)] , - m < t < m , is an ensembl e of real valued 

or complex valued functions which can be characterized 
through its probability structure. The variable t can 
represent any characteristic of a process, although for 
convenience it will be interpreted as time in the fol ­
lowing discussion. Each particular function xk (t) • 

where t is a variable and k is fixed , is called a 
sampl e function. In practice a sample function may be 
thought of as the observed result of a single experi­
ment . 

A particular sample function ~ (t) is , in 

general, not suitable for representing the entire ran­
dom process. It is one of the main goals of statistics 
to estimate the properties of the entire process on the 
basis of particular sample functions. 

Consider two. arbitrary random processes 
[xk (t)] and [yk (t)] with mean values 

u (t) 
X 

u (t) 
y 

E [ xk (t) J 

E [ yk (t)] 

(2-1) 

(2-2) 

Their autocovariance functions arc defined at 
arbitrary fixed values of t and t - T , by 

Similarly, the cross-covariance function is defined by 

In general, all the preceding quantities vary 
for different values of t and < 

Other statistical quantities can be defined 
over the ensemble by fixing three or more t imes. The 
probability structure is thus described in finer and 
finer detail by increasing the number of fixed times. 
If all possible probability distributions involving 
~ (t) are independent of the absolute times t 1 , t 2 , 

tn , and are only function of the intervals 

t
1 

, t
2 

, --- , tn , --- , then the process is said to 

be strongly stationary. If only the first "n" probabi­
lity distributions are independent of the absolute 
times, the process is called nth-order stationary. In 
order to prove nth_order fitationarity it is only neces­
sary to prove that the nt probability density is 
independent of absolute times because the first (n-1) 

2 

probability densities are obtained from the nth density 
by successive integrations. 

In the special case of a Gaussian independent 
process, the mean value and the covariance function 
provide a complete description of the underlying pro­
bability structure. In this case, second order sta­
tionarity or weak stationarity is equivalent to strong 
stationarity because the former implies the mean and 
covariance function are independent of absolute times 
and this inturn implies all the possible probability 
distributions are independent of absolute times be­
cause all of them may be derived from the mean value 
and the covariance function. 

2. Spectral Density Functions . It will now be 
assumed that for the two stationary processes [xk (t)] 

and [yk (t)] , the functions a (r) , a (r) and 
X y 

axy(t) exist and have Fourier transforms Sx(f) , Sy(f) 

and Sxy(f) given by: 

s (f) 
= l: ( ) 

•211"fTi d a T e T 
X X 

S (f) = Joo a (T) e - 2
r.fTi dT 

Y -oo Y 

S (f) = J oo 
xy 

-oo 
( ) -2 1T fTi d a T e T 

xy 

(2-6) 

(2-7) 

( 2-8) 

S (f) and S (f) are defined as the power spectra of the 
X y 

stochastic processes [x (t ) ] and [yk(t) ] . S (f) k xy 
is defined as the cross-spectrum function between these 
processes. 

It is conveni ent to define the so-called 
physically realizable one-sided power spectra and cross­
spectrum functions. These functions given by 

G (f) = 2 S (f), 0 .s f < oo ,otherwise zero (2-9) 
X X 

(2-10) G (f) = 2 S (f) • 0 .s f < oo l otherwise zero 
y y 

G (f) = 2 S (f), 0 .s f < oo, otherwise zero (2-11) 
xy xy 

are the quantities measured by direct procedures in 
practice. 

In the case of real valued process all the 
previous equations may be simplified . The real valued 
two-sided power spectrum is obtained from equation 2- 6 
by making the imaginary part equal to zero: 



S (f) = J CD a (T) COS 2 7rfT dT (2-12) 
X X 

- CD 
Due to the fact that the covariance is an even function, 

s (f) 
X 

(2-13) 

and 

G (f) = 4 JCD a (T) cos 2 7rfT dT 
X X 

0 
(2-14) 

for 0 ~ f < ~ , otherwise zero. 

The physically realizable one-sided cross­
spectrum function can also be expressed as 

G (f) = 2 J CD a (T) e - 2 1r fTid'T 
xy 

0 
xy (2-15) 

and being a complex number, it can be written as: 

G (f) = C (f) - i Q (f) 
xy xy xy (2-16) 

where C (f) and Q (f) are the co-spectrum and xy xy 
quadrature spectrum, respecti vely. Foll owing Bendat 
and Piersol (1966) the co-spectrum can be thought of as 
the average product of x(t) and y(t) wit hin a narrow 
frequency interval, between f and f + 6f , divided 
by the frequency interval, 6f. The quadrature spectrum 
is the same except that either x(t) or y(t) , not 
both, is shifted in time sufficiently to produce a.90-
degree phase shift at the frequency £. In this manner, 
C (f) is a measure of t he i n-phase-covariance, and xy 
Q (f) is a measure of the out-of-phase covariance. xy 
In more practical words, the co-spectrum measures the 
contr ibution of oscil l ations of different frequencies 
to the total cross-covariance at the lag zero between 
two time series . The quadrature spectrum measures the 
contribution of t he different harmonics to the total 
cross-covariance between the series when a l l the harmon­
ics of the series x(t) ar e delayed by a quarter period 
but the series y(t) remains unchanged (Panofsky and 
Brier, 1958). 

Equation 2-16 may be inverted to give the cross 
covariance functi on 

a (T) = JCD [c (f) cos Z1rfT+ Q (f) sin 21rfT] df 
xy 0 xy >.:y 

Because a (T) satisfies the re l ation 
xy 

(2-17) 

t he co-spectr um may be expressed as: 

c (f) 
xy 

=jCD[a (T) +a (T)] COS 27rfT dT: C (- f) 
xy yx xy 

0 (2-18) 

meaning that C (f) displays symmetry about the ordin­xy 
ate. 

3 

Similarly the quadrature spectrum may be 
expressed as: 

0) 

Q (f) =1 [a (T) -a (T) J sin 21rfT dT = - Q (- f) 
xy o xy yx xy 

(2- 19) 
meaning that Q (f) is an odd function . From equa­xy 
t ions 2-18 and 2-19 and f r om the definitions 

G (f) = c (f) - lQ (f) 
yx yx yx 

G (f) 
xy 

.. c (f) - iQ (f) 
xy xy 

one obtains, 

c (f) " 
1 

[ G (f) Gyx(f)J 2 + (2- 20) xy xy 

Q {f) = 
xy Zi [ G (f) - G (f) J xy yx (2- 21) 

An alternative way to describe G (f) is by xy 
t he complex polar form 

where 

and 

- i 6 (f) 
e xy O:Sf<CD 

'fez (f) + Qz (f) V xy xy (2-22) 

6 (f) = Tan - 1 
xy [ Qcxxyy~ff~ ] (2- 23) 

which is called the phase function . 

The physical meaning of G (f) and e (f ) xy xy 
and the role they play in a linear system will be 
explained in Chapter 111-2. By interchanging x(t) and 
y(t) one finds that C (f) = C (f) and 0 (f) = yx xy -yx 
-Qxy(f) . Therefore, one can write: 

and 

G (f) 
yx 

* G (f) 
xy (2-24) 

G (f) ; G ( - f) (2-25) yx xy 

where G* (f) denotes the compJ ex conj ugatc of C. (f). 
~ ~ 

3. Coherence Funct jon-<. Thl' cohcn·nl'l' funct ion 
is a real valued quantitv v' (f ) defined 3" . xy 

yz (f) 
xy 

Is (f) ll 
xy 

s(i)s(r) 
X y 



For a better understanding of the coherence 
function it is useful to make an analogy with the clas­
sical r esults of correlation and regression analysis. 

In statistical analysis of real variables , the 
correlation coefficient between two variables x and 
y with mean values of zero is defined as 

Pxy = 
E (xY) cov [x,y] 

rr u 
X y 

(2-27) 

where o2 and o2 
X y 

represent the variances of x and 

y ' respectively. 

Similarly, if complex numbers X and Y are 
being considered the square of the correlation coeffi­
cient becomes: 

E [xx"] (2-28) 

where the (*) symbol represents the complex conjugate 
of the term in question . 

2 Pxy 

Rewriting equation 2-28 one gets: 

E[xy*) E(x* Y) 
E [xx*] E [yy"] 

(2- 29) 

From equation 2-29 it i s seen that the coherence func­
tion may be thought of as a correlation coefficient 
squared if ~e replace oXY with Sxy(f) , a~ with 

S (f) and ay2 with S (f) . We will proceed to show 
X y 

the meaning of these changes. 

Cramer ' s representation of a stationary process 
with zero mean gives : 

where 

is an 

sx (f) 

x(t) -= J co 
-co 

e 2 r itf dz (f) 
X 

~o.•e have writ ten dzx {f) for zx (df) and 

orthogonal set function with 

I dzx(f) lz E ·- dS (f) s {f) df 
X X 

being the power spectrum of the process 

Similarly we have: 

E I dzy{f} 12 = dS (f) = s {f) df 
y y 

and 

E l dzx(f} · dz;(r} J dS {f) :: s {f) df 
xy xy 

{2-30) 

zx (f) 

(2-31) 

(x(t)}. 

(2-32) 

. (2-33) 

4 

Comparing equations 2-31, 2-32 and 2-33 with the expres­
sions 

2 crx E [xx*] E lxlz (2-34) 

IT2 y = E [ yy*) :: E IYI2 (2-35) 

aXY :: E [xy*] (2-36) 

i t may be seen that the coherence function can be 
interpreted as a correlation coefficient squared between 
the spectral variables z (f) and z (f) calculated 

X y 
at each frequency f . 

It shoul d now be clear that it is often 
advantageous to study correlation problems in the 
frequency domain rather than in the time domain. Work­
ing in the frequency domain, any stationary series can 
be considered as a sum of components or frequency bands , 
each component being statistically independent of the 
others. One of the important things that the theory 
of stationary processes tells us is that not only is 
the component with center f . independent of all the 

J 
other components of the process, but it is also inde­
pendent of all components of another process except for 
the component centered on f. . In this manner when the 

J 
coherence between two time series is calculated one 
looks for correlations among them in a very small 
range of frequencies. On the other hand, with the 
cross covariance function one is looking for correla­
tions between the two processes considering each one 
as a whole. 

4. Partial Coherence Functions. Consider two 
real-valued stationary processes [x(t)] and [y(t) ] 
and assume that the mean values are zero in order to 
simplify the notation. The residual random variable 
6y(t) of y(t) from x(t) is defined by: 

.Oy{t} = y{ t) - 9{t} (2-37) 

where 9Ct) is the l east squares prediction of y(t) 
from x(t) , 

y(t) 
a 
~ x{t) 
a 

XX 
(2-38) 

Consider now three real-valued stationary ran-
[y(t)] where dom processes [x1 {t) ] , [x2(t) ] and 

the mean values are assumed to be zero . One can define 
the partial correlation coefficient ply·2 by 

az 
.Oy az .Ox! 1~· 2 

a a a a (2- 39) 
.6x1 ~XI .Oy.Oy 11· 2 yy· 2 

2 

ply 2 

where 

a = a ly· 2 • a 11{ 1 - P~l) (2-40) 
.Ox! .Ox! 

a :: a a ( 1- p~} (2-41) 
.Oy .6y yy· 2 yy y 



a = a = a (I - a 12a 2y ) (2-42) 
llx1 y ly . 2 ly a 22a ly 

in the 
quency 
x1(t) 

Similar to the partial correlation coefficient 
t ime domain, it is possible to define in the fre­
domain a partial coherence function between 
and y(t) with x2(t) removed at every t by 

least squares prediction from x
1

(t) and y(t) : 

G11.2(f} Gyy.2(f) 

(2-43) 
The terms in equation 2-43 are called residual 
tial spectra and are defined by: 

[ 
s t 2(f) szy(f) J 

sty. 2(f) s t y(f) t - s22(f) sly{f) 

s 
2

(f) = s (f) ( 1 - y2~ (f) ) 
YY· yy y 

or par-

(2-44) 

(2-45) 

(2-46) 

The proof that the partial coherence is 
nothing else but an analog of the partial correlation 
coeffi cient between the spectral variables, calculated 
at each frequency f , can be carried out by following 
the same procedure used for the normal coherence. 

The case of multiple processes is onl y a gen­
eralization of the three variable case explained before. 
The partial coherence function bewteen x

1 
(t) and y(t) 

with x2(t) , x3(t) , --- , xn(t) removed at every 

t by least squares prediction from x
1 
(t) and y(t) , 

is defined by 

ya (f) " 
ly· 23 ...... n 

J S 1 y. 2 3 . ..... n (f) J a 
s (f) . s {f) 

11 · 23 .... n yy· 23 ... . n 
l2-47) 

The definition and calculation of the partial 
spectra of formula 2-47 has been done in matrix form by 
Goodman (1965) in a very suitable form for the use of 
high speed digital computers . Their meaning is essen­
tially the same as those of formula 2-43 . 

Similarly to the development rnade for the par­
tial coherence function it is possible t o defi ne the 
partial phase function between x

1 
(t) and y(t) with 

x2(t) , x3(t ) , --- - , xn(t) removed at every t br 

lease squares prediction from x1 (t) and y(t) , 

-1 
8 = Tan ty.23 ..... n 

s Imag. part of 1y.23 .... n 
Real part of S 1y.23 ..... n 

(2-48) 

S. Application of Partial Coherence Functions. 
When more than two var1ables are be1ng cons1dered, the 
partial coherence function, rather than the ordinary 
coherence, gives a quantitative indication of the degree 
of linear dependence between the variab les. An example 
of erroneous high coherence is shown in Figure 2.1. 

5 

Assume that a coherence function value near 
unity is computed between the vari ables x1 (t) and 

y(t) . One would be inclined to believe that there is 
a linear system relating these two variables. 

____ _____ _ y{t) 

Figure 2 .1 Example of erroneous high coherence (Ben­
dat and Piersol, 1966) . 

Suppose there is a third variable x2(t) which is high­

ly coherent with x
1
(t) and also passes through a lin­

ear system to make up y(t) . In this type of situa­
tion, the high coherence computed between x1 (t) and 

y(t) might only be due to the fact that x2(t) is 

highly coherent with x
1 

(t) . .If this is i n fact the 

situation, the partial coherence between x1 (t) and 

y(t) will be very low. 

On the other hand, the opposite situation can 
exist. If t~o uncorrelated inputs x1 (t) and x 2(t) 

pass through existing linear systems to make up the 
output y(t) , the coherence functions riy(f) and 

y~y(f) will appear less than unity since there will 

exist a contribution due to the other input which will 
appear as noise. If the partial coherences are compu­
ted, the effects of the other input will be subtr acted 
out and the true coherence 11•ill be obtained. 

6. procedure of Computation . All the computa­
tions were carried out in a 6600 CDC digital computer. 

The first step in computing the spectrum is 
the calculation of the autocovariance function of the 
series according to the formula, 

~ (i) = N - i 
[ N~i 

xtxt+i - N-i XX t:j 

(t~+l xt) 
(N~i 

t= I 
x,)] 

(2-49) 

for i .. 0, 1, 2, , m , where m is thc max­
imum number of lags and N the number of observation~. 

Next, thc fi nit<· cos i m· ~cries t ran~ fonn fullt·­
tion of t ht.' autocovariat~n·~ is calculated ;u:t·orJIIII! t u 
the formula (Blackman ami TuJ..cy. 1958) • 

m 
a (il :r: ~' (') co~ 

__ll_.!_ 
X 

j = 0 
X X J m I : :•PJ 

for = 0, l, ' m Wht' JT I .. 



~ ' (0} 
XX 

~ (0) 
XX 

(2-51) ~' (i) = zfi (i) for 1 :S 
XX XX 

:S m -1 

and 

~ ' (m) = ~ (m) 
XX XX 

The spectrum is calculated according to the spectral 
window formulas (Bl ackman and Tukey, 1958): 

and 

1\ 
G (0} = 

X 
o.5G(o) + o.5G( t ) 

X X 

8 <o a o.z5 G' (i- 1} + o.5 c (il 
X X X 

+ o.25 G' (i+ tl 
X 

for i = 1 , 2 , 3, . .. , m -

a(m) = 0 . 5G(m - 1) + 0 .5 G(m) 
X X X 

(2-52) 

In computing the cross spectr a, the first 
st ep is the calculation of the cross-covar iance func­
tions of series x and y 

[

N_;i 
~ ( - i) = N - i ~ xtyt+i 

xy t= l 

~ ( - i ) = 
yx [~-i 

t = 1 

( 
N ) ( N- i )] 
1: Y t 1: xt 

t=i+1 t =l (2-53) 

Next, the cross-covariance transform functions are com­
puted according to the formulas (Granger and Hatanaka, 
1964): 

c (i) 
xy 

and 

m 

= ~ 1: ( ~ ' (j) + ~ ' (j) ) cos ~ 
j= O xy yx m (2-55) 

m 
Q (i) = 2 1: ( ~' {j) - ~' (j)) s in ~ 

xy j =O xy yx m (2- 56) 

for i 0 , 1, 2, . . . . , m 

wher e 
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~I (0) 
xy 

~ (0) 
xy 

~ 1 (i) = 2~ (i) for 1 :S :S m - 1 
xy xy 

~ ' (m} 
xy 

~ (m) 
xy 

and similarly for f:~ yx 

(2 -57) 

In order to obtain the real xnd imaginary part 
of t he cross spectrum, t he cross-covar i ance transform 
functions are weighted according to the spectral win­
dow formulas: 

1\ 
c (0) 

xy 

e (i ) 
xy 

1\ 
C (m ) xy 

and 

1\ 
Q (0) xy 

- 0 . 5 c ( 1) = 0 . 5 c (0) + 
xy xy 

"' 0. 25 c (i-1 ) xy 
+0.50 C (i) xy 

rJ 

+ 0 . 25 c (i+1) 
xy 

for i = 1, 2, 3 , . m - 1 

,..._ """' 
0. 5 C (m - 1) + 0.5 C (m) 

xy xy 

0 . 5 Q (0) 
xy 

0 . 25 Q (i- 1) + 0.50 Q (i) 
xy xy 

+0.25Q (1+1) 
xy 

fori = 1, 2 , 3 , . ... , m - 1 

0.5 Q (m) 
xy 

(2-58) 

(2- 59) 

The resulti ng e· (i) and 1\Q (i) are the esti mated xy xy 
co-spectrum and quadrat ure spectrum, respectivel y. 

The gain being similar to a r egression coef­
ficient, of series y on series x at each frequency 
is computed by 

I ~w I .. " G (i) 
X 

for i = 0, 1 , 2 , . . . . , m 

The phase is estimated by 

1\ 
B(i) - 1 

tan 

for i = 0, 1, 2, ... . , m 

and t he coherence becomes , 

(2-60) 

(2-61) 



~l (i) + el {i) 
xy xy 

(2-62) a (i) a {i) 
X y 

for i " 0' 1' 2 ' .. .. ' m 

Frequently there are obtained unstable values 
of the gain in the higher frequencies of the analysis 
per f ormed. These values reflect no mor e t han t he round­
ing-off error in the division of two smal l quantities 
(Jenki ns, 1963). This unreal iability carries over into 
the coherence function and the phase angle and it is 
common to obtain nonsense values for these function in 
the hi gher frequencies of the analysis. Because of 
this, the gain, the coherence and the phase should al­
ways be interpreted in the light of the information 
given by the cross-amplitude curve defined as 

(2-63) 

for i 0, 1, 2, . . . . , m 

7. Confidence Limits . The distribution of the 
cross-spect ral estimates has been studied by Goodman 
(1957) with the main assumption being the process 
(xt , yt) has a bivariate normal distributi on. If the 

sample size is N and the cross -spectrum is estimated 
over m frequency bands, the distribution of the esti­
mated coherence, y2(f), when the true coherence is 
zero at a given frequency, is given by 

7 

F(u) (2-64) 

Equation 2-63 enables one to fix confidence 
limits for the coherence. Tables which give these 
limits have been presented by Granger and Hatanaka 
(1964). 

Goodman ' s work al so provides a frequency 
f unction for the estimated phase Rngle , ~(f) . This 
frequency function is extremely complicated but t wo 
important simplifications are noted by Granger and 
Hat anaka (1964) : 

i) When the true coherence is zero, a(f) 
is rectangularly distributed over the en­
tire admissible range of values. 

ii) ~~en t he t ;ue coherence is one, the var­
iance of e(f) is zero . 

Jenkins (1962) deduces ~(f) approximately 
normally distributed wi th mean e(f) and variance 
given by, 

" 1 km [ 1 ] Var (6(f) ),_.. 2 N -yr[f) - 1 (2-65) 

where m and N are the same as in equation 2-63 and 
k is a constant associated with the particular spec­
tral window used. The values of k are described by 
Parzen (1961) . 

Jenkins' approach has been used here to fix 
confidence limits for 'El (£) 



CHAPTER III 

~~THEMATICAL TECHNIQUES OF SPECTRAL ANALYSIS 
FOR LINEAR SYSTEMS 

1. Frequency Response Functions. A physically 
realizable, constant parameter linear system is defined 
by the convolution integral 

CD 
y(t) = J h(T) x(t - T) dT + n(t) 

0 

(3-6) 

y( t) = J CD h( 'T) X( t - 'T) dT 
0 

where n(t) is a noise term which arises because the 
(3-1) input and output variables may not be well controlled. 

n(t) may also include quadratic and higher terms omit­
ted in the linear approximation. 

The value of the output y(t) is given as a 
1~eighted linear sum over the entire history of the in­
put x(t) . The weighting function h(r) associated 
with the system is defined as the output or response 
of the system to a unit impulse function, and is meas­
ured as a function of time, T , from the moment of 
occurrence of the impulse input. 

The dynamic characteristics of this type of 
system can be represented by the Fourier transform of 
h(t) 

J
CD - i21rfT 

H(f) " h(T) e dT 
0 

(3- 2) 

The frequency response function is of great 
interest since it contains both amplitude magnification 
and phase shift information. Since H(f) is complex 
valued, it can be ex.p·ressed as 

H(f) " I H(f) I e -i~(f) (3- 3) 

The absolute value IH(f) I is called the sys­
tem gain factor and the angle ~(f) is cal l ed the sys­
tem phase factor. 

From equations 3-1 and 3-3 it is easily shown 
that the response of the system to a sinusoidal input 
of the type 

x(t) = a sin (2w'ft + ~) (3-4) 

can be expresses as 

y(t) = a I H(f) I sin [ 2 rit + ~ + tb(f)] (3-S) 

Therefore, the gain IH(f) I measures the am­
plitude magnification at frequency f when the input 
is a sinusoid of frequency f , while ~(f) gives the 
corresponding phase shi ft. 

2. Single Input Linear Systems. From the start, 
it is good to notice that the largest part of the re­
sponses in geophysical systems are nonl inear. When the 
deviations from the linear case are not too large, the 
output can be written in tho form 

8 

If x{t) and y(t) may be regarded as sta­
tionary time series, and n(t) can be neglected, it 
can be shown the following relations hold for the sys­
tem represented by equation 3-1 (Enochson, 1964), 

G (f) 
xy 

H(f) G (f) 
X 

From equation 3-8 we get: 

and 

X 

e (c) = q,(r) 
xy 

(3-7) 

(3-8) 

(3-9) 

(3-10) 

Equation 3-7 contains only the ga:in factor and 
in this manner it only gives amplitude i nformation. 
Equation 3-8 is actually a pair of equations containing 
both the gain and the phase factor . By means of equa­
tion 3-8, if the input and corresponding output of a 
system are known , we can estimate H(f) which will be 
of great importance in predicting future responses of 
the system. If the input x(t) in equation 3-6 is of 
the type x(t) • a cos (2rrft + t) , the ouput of the 
system is: 

y(t) = a . cos ( 2 rit + ~ + l/l(f) ) + n(t) 
X 

where the spectrum of the residuals term n(t) is 
given by Jenkins (1963) as 

G (f) = G (f) ( 1 - '( z (f) ) 
TITJ yy xy 

c:~-11) 

(3-12) 

Gnn(f) will give an idea of possible other periodici­

ties in the series y(t) which are not shared by x(t). 

It is important to notice that the frequency 



response function for a constant parameter linear sys­
tem is a function of frequency only. If the system 
were nonlinear the weighting function, h(t) , would 
be a function of the applied input, hx(t) , and then 

the f r equency response function would be a function of 
both, frequency and applied input. If the parameters 
of the system were not constant, the dynamic properties 
would have to be described by a time-varying weighting 
function, h(T , t) , which is defined as the output of 
the system at any time t to a unit impulse input at 
time t - T . In this case the frequency response 
function would be a function of both, frequency and 
time. 

For a l inear system, equations 3-7 and 3-8 
may be substituted into the definition of coherence 
(equation 2-26) giving 

'12 (f) 
xy (3-13) 

Thus, the coherence function may be thought 
of as a measure of linear re l ationship in the sense 
that it attains a theoretical maYimum of one for all 
f in a single input linear system. 

Goodman et al. (1961) examined a single in­
put linear system with the assumption there was noise 
in the measurement of the output. 

x(t) 
Process 

7](1) 

t-------L,(tl 
y'(t) 

Figure 3.1 Linear system with noise in the measure­
ment of the output (Goodman et al. 1961) 

Assuming ~(t) and x(t) statistically un­
correl ated and a ll three processes x(t) , y(t) and 
n(t) stationary Gaussian noises, the effect of the 
disturbance n(t) appears only in the coherence 
y2 (f) which is now in the form xy 

'12 (f) 
xy 

1+ 
G (f) 

T) 

CC1fY y 

(3-14) 

It is seen from equation 3- 14 that the coherence de­
creases as the size of the disturbance increases. 

Enochson (1964) considered a general case of 
noise in both input and output measuring devices. As­
suming t hat a measured input x(t) and a measured out ­
put y(t) are composed of true signals u(t) and 
v(t) and uncorrelated noise components n(t) and 
m(t) respectively as shown below, 
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u(t) 1--._,v( ..... tl_-o----~t) 

m(t) 
n(t) x(t) 

Figure 3.2 Linear system with noise in the measure­
ment of the input and output (Enochson, 
1964) . 

then the "desired" coherence function is 

'12 (f) 
uv 

but the measured coherence function will be 

(3-15) 

(3-16) 

Thus, theoretically, the measured coherence 
function will always be l ess than the desired coherence 
function. 

The concepts outlined above are most i mportant 
in the analysis of multiple hydrologic time series and 
in the design of adequate hydrologic instrumentation 
(Eagleson and Shack, 1966). 

3. Multiple Input Linear Systems. Constant 
parameter linear systems responding to multiple inputs 
from stationary random processes will no\\' be consider­
ed. It will be assumed that N inputs are occurring 
with a single output being measured. The output may 
be considered as the sum of the 

,------------, 
I I I I h, (t) ~y,(t) 
I 

xf'tl : ·I h2 (t) ~yf't) 
I I I 
1 I 1 

x~ (1)-+-l-·-:l_hn_( t_l __,f-- y~tl 
I 
~-------------

FigurC' 3.3 ~luJtjplc input linear systt•n, . 

y(tl 



N part ial-non-measured-outputs y i (t) . i " 
1, 2, . N That is, 

N 
y(t) = ~ y.(t) 

i = 1 
1 (3-17) 

where y. (t) is defined as that part of the output 
~ th 

which is produced by the i input when all the other 
inputs are zero. 

The cross-spectral relations between the in­
puts and the output can be expressed concisely with 
matrix notation. The following formulation of results 
is contained i n Enochson (1964) and in Bendat and 
Piersol (1966) . 

First define a N-dimensional input vector 

Let H(f) be a N-dimensional f r equency r e­
sponse function vector 

Next, define aN-dimensional cross-spectrum 
vector of the output y (t) wi·th the inputs xi (t) , 

[ Sxy(f)] = [ S1y(f) , s 2y(f) , • .. • . , SNy(f)] 

(3- 20) 

where 

S (f) , i , j = 1 , 2 , .... , N (3-23) 
xixj 

The fundamental equation for multiple input, 
constant parameter linear systems can be written as: 

(3-24) 

where [H*'(f) ] denotes the complex conjugate trans­
pose vector of [H(f)] . 

The basic equation which gives the transfer 
functions H.(f) in the case of multiple correlated 

J 
inputs is 

= (3-25) 

Equati on 3-25 may be rewritten as the system 
of equations 

N 
~ 

j = 
Hj (f) S .. (f) 

lJ (3-26) 

Solving equation 3- 25 for the transposed row vector 
[H' (f)j we get 

(3-27) 

Equation 3-27 gives each Hi (f) as a function of the 

input-output cross spectrum and holds whether or not 
the inputs are correlated 

s. (f) 
lU 

i = 1, 2, . . .. . , N (3-21) The solut i on of equation 3-27 has been pre-

Final ly, define the N x N cross-spectr al matrix of 
the inputs xi(t): 

811 (f) 812(f) 

8 21(f) 822(!) 

(3-22) 
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sented by Goodman(l965) in the form, 

s (D 1y.234 ... . . N 
811 .234 .. . .. Ntr) 

(3-28) 

s (f ) 
Ny. 1 2 34 ..•. N- 1 

8NN·1 234 .. . . N- t(r) 

Equation 3-28 will be used in Chapter VI . where monthly 
rainfall in different parts of a watershed is consi­
dered as the multiple input vector which gives as total 
output the monthly runoff at the outl et. 



Chapter IV 

THEORY OF CROSS-SPECTRAL ANALYSIS 
OF LINEARLY DEPENDENT STOCHASTIC PROCESSES 

1. Moving Average Process. The moving average 
th process of m order is defined by 

y(t} = 
m 
I: 

j = 0 
a . x(t - j} 

J 
(4-1) 

where x(t) is a random process uncorrelat ed with 
X(t- j) for all j > 0 , and the a's are weights as­
signed to each past value of x(t) . 

This process may be used, at l east as a first 
approximation, as the generating scheme for certain 
hydrologic phenomena. For example, consider that run­
off f or a given interval of time is a function of all 
climatic factors, present and past, since the begin­
ning of time. The dominant factor is effective pre­
cipit ation which is defined as total precipitation less 
all losses. Because the effect of effective precipi­
tation in the present runoff decreases with an increase 
in antecodency, each value of effective precipitation 
must be given a weight whose value decreases with an 
increase in antecedency. If the present runoff is 
essentially independent of the effective precipitation 

beyond the mth antecedent interval of t ime, then 
runoff may be represented as being generated by a mov­
ing average of extent m of effective precipitation 
(Matalas, 1966). 

From equations 3-7 and 3-8 we can write the 
spectrum of the process y(t) as 

G (f) • 
y 

m 
I: 

t=o 
G (f) 

X 

and the cross-spectral density function G (f) xy 

Gx (f) = I: at e -
( 

m zru) 
Y t•o 

G (f) 
X 

(4-2) 

as: 

(4-3) 

where the form of G (f) has been studied by Siddiqui 
y 

(1962). ~taking 

m 
I: 

t=o 

- 2lli.f ate = H(f) (4-4) 

the spectral matrix of the process y(t) can be writ­
ten as: 

11 

G (f) 
XX 

G (f) G (f) 
XX xy 

G (f) 
yx 

H • (f) 

G (f) 
yy 

H (f) 

where the use has been made of equation 2-24. 

From equation 4-5 one gets, 

'(2 (f) • 
xy 

H(f) · H* (f) 

I H(f) 12 

(4-5) 

(4-6) 

The coherence function is one for all f es­
sentially because the process y(t) is a determinis­
tic linear function of the process x(t) . Equation 
4-6 provides a simple means of t esting the validity to 
assume a moving average process. 

2. Autoregressive Processes. In a wide variet y 
of geophysical problems, multidimensional types of 
autoregressive schemes are of common application. The 
th d' 0 1 0 f th d n 1mens1ona autoregress1ve process o m or er 

is defined by 

(j) (j) (j) 

a tt 3 t2''' ' ' '' 3 tn x
1
(t-j) 2.1 ( t) 

(j) (j) (j) 

X (t) 
n 

m ~2 1 ~22' .. 0 

•• · ~zn x
2
(t - j) t)tl 

=I 
:(j) 0 (j) j= l (j) 

an!an 2 .. . . . .. ann X' ( I• j) 1 . ( t ) 
n II 
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where [ z. (t) ] 
J 

is a random component uncorrelated wi th 

[x . (t-k)] and 
J 

[ z.(t-k) ] for all 
J 

cal cases, the random component, 

k > 0 In practi-

[z .(t) ] , may be i n­
J 

t erpreted as the residuals which 
of events, other than [ x.(t-k)] 

J 

represent the action 
, affecting [x . (t)]. 

J 

Examples of 'this type of process occur fre­
quently in hydrology . In the case of representing run­
off as a moving average process of effect ive precipi­
tation, m may happen t o be very large. It would be 
a mistake to try to reduce the order of t he moving 
average because it is convenient to consider the ef­
fective precipitation for al l antecedent intervals of 
time, however small their contribution may be to the 
present runoff. In this case, the generating scheme 
for the runoff can be r epresented by an autoregressive 
"process which involves far fewer coefficients than the 
moving average process (Matalas, 1966). 

River flows can be represented in many in­
stances by autoregressive processes (Yevjevich 1964, 
Roesner 1965, Quimpo 1966) . 

In the analysis of the cross-spectral char­
acteristics of autoregressive processes, the mathema­
tical complications increase very rapidly with t he 
order of the process . Fortunately, most of the auto­
regressive processes used in hydrology are the first 
or second order Markov linear processes. Tho analysis 
and results obtained for the cross-spectral character­
istics of Markov linear processes is believed to be 
new by the author. 

First order Markov linear process. Let us as­
sume that a certai n process, such as annual runoff, 
can be represented by a first order model , 

(4-8) 

where the t erms are the matrices of equation 4-7 when 
m = 1 . Two realizations of this process can be ex­
pressed by 

+ (4-9) 

which results from making m a 1 , n • 2 in equation 
4-7. 

Equation 4-9 is equivalent to the system: 

( 4-10) 

(4-11) 

Quenouille (1957) shows the coefficient matrix 
of a first order autoregressive scheme to be equal to: 

12 

( 4-12) 

where is the covariance matrix for the lag 

one, 

(crij( t )J 
r 11(1) a 12(1] 

(l' 21 ( 1) a 22( 1) 

(4-13) 

and similarly 

[a 11(0) a 12(0] 
[ cr ij( O)] = 

a 2 1 ( 0) a 22(0) 
( 4-14) 

the inverse of [a (O)] denoted by [a (0) ] - 1 . 

From equation 4-12 it is directly obtained: 

where 

a 11(1) a 22(0)- a 
12

(1) a
21

(o) 

a11 a11(0)a22(o)-a21(0) a12(o) 

p11(1) - pl 2(1) Pt 2(0) 

1 - p~ 1 (0) 

[ ) 
1/2 a 

11
(0) ·a 

22
(0) 

(4-15) 

(4-16) 

The terms 

of x
1 

(t) 

a 11 (0) and a 22 (0) represent the variances 

and x2(t) , respectively: 

Similarly we can obtain: 

0"2 
1 

(4-17) 

(4-18) 

(4-19) 



-a 11 ( 1) a 1 2 ( 0 ) + a 1 2 ( 1) a 11 ( 0) 

a i 1(o) a 22(0) - a 2 1(0) a 12(0) 

o-1 ( P12(1)- P11(t) P12(o)) 

v 2 {1- p:2(o)) 

cr21(l) a 22(0) - a 22(l) a 21{0) 

a 11(o) a 22(o) - a 21(o) a 12(o) 

o-2 ( Pzt(t) - Pz2(t) P12(o)) 

~r 1 (t- p:2(o)) 

= 

( 4- 20) 

(4-21) 

Assuming z
1

(t) uncorrelated with x1{t-s) and mul­

tiplying equation 4-10 by x1 (t-s) , one get s after 

taki ng expected values: 

Assuming now that one has two first order 
Markov linear processes, or in other words that the 
coefficients a12 and a21 are identically equal to 

zero , further simplificat ions are possib le. Substitut ­
ing in equation 4-22 the well known result (Kendall, 
1966) : 

one gets: 

I sl ( 1) 
p11 (4-23) 

a 2 !l(s) 

Taking the Fouri er transform of ~21 (s) 

cross-spectrum between the series x (t) 
1 

or 

(X) 

k 
s=- co 

( 4- 27) 

we get the 

and x2(t): 

(4-28) 

(4-29) 

Equation 4~29 gives the cross-spectrum between two 
first order Markov linear processes. 

Siddiqui (1962) shows that the spectrum of a 
first order Markov linear process is equal to : 

(4-30) 

(4- 24) which can be written as, 

Using for a
11 

and a12 the values given by equations 

4-15 and 4-20 and performing some simplifications, 
equation 4-24 may be reduced to: 

(4-25) 

From equation 4-25 it becomes: 

(4-26) 

and 
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(4- 31) 

Similarly, 

( 
2ll'ifl ( -Zll'if) [4 3'1 1- p

22
(1) e I - p

22
(1) (; • -



Using equations 4-29, 4-31 and 4-32 and making some 
simplif ications, the coherence between the t wo proces­
ses is found to be equal to : 

(1- p
11

(1) p
22

( t ) ) a p:
2
(0) 

(1 - Pf1(t)j jt- P2z(1)} (4-33) 

Equat ion 4-33 shows the coherence function 
between two first order autoregressive processes equal 
to a constant independent of frequency*. This result 
should provide a valuable tool in the analysis of this 
type of processes. 

Second order ~larkov linear process. The method 
that will be presented now can be used to study the 
spectral matrix of any autoregressive process regard­
less of its order or dimension. 

Quimpo and Yevjevich (1967) have shown that 

2nd order autoregressive schemes may be used to fit 
the patterns in the sequence of daily r i ver flows af­
t er the periodic component has been removed from the 
series. 

The equation for a two-dimensional 2nd order 
autoregressive process is obtained by making n = 2 
and m = 2 in equation 4-7: 

(4-34) 

which is equivalent to the system: 

(4-36) 

In order to obtain t'he coefficient matrix 
[aij] as was done for the l st order ~tarkov process, 

it will be necessary to transform the 2nd order process 
to a 1st order process. This, in turn, can be accom­
plished by doing 

* This result was first pointed out to the author by 
Dr. M. M. Siddiqui of Colo·rado State University 
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(4-37) 

and 

( 4-38) 

Equations 4- 34, 4-37, and 4-38 can be writt en 
as: 

x
1 
(t) 8 tta1 2 0 0 x

1
(t-l) 

x
2

(t) a21a 22 0 0 x
2
(t- 1) 

x
3
(t) 0 0 0 x

3
(t-1 ) 

x
4

(t) 0 0 0 x
4
(t-1 ) 

0 0 bl1b12 x
1
(t- 1) z I (t) 

0 0 b21b22 x
2
(t- 1) zz(t) 

+ 
0 0 0 0 xp- 1) 0 

0 0 0 0 x
4

(t- 1) 0 

which can be expressed: 

or 

where 

8 tt 8 12 b tl b 12 

a21 8 22 b21 b22 

0 0 0 

0 0 0 

+ 

(4-39) 

( 4-40) 

(4-41) 

(4-42) 

and [x. (t)] now represents a four-di mensional 1st 
J 

order process for which we can obtain [u .. ] 
l) 



(4-43) 

[ o. .. (1) ] and [o. .. (0)] represent now four by four 
1) 1) 

covariance matrices . 

Using straightforward relations l ike: 

a 
13

( 1) = Cov (x
1
(t) x

3
(t-1)] 

Cov [x
1

(t) x
1
(t-z)J 

we can express 

and similarly, 

[aij (1)] by: 

a 11(1) a 12( 1) a 11(2) a 12(2) 

a 21(1) a 22( 1) a 2 1(2) a 22(2) 

a 11(0) a 12(0) a 11(1) a 12( 1) 

a 21(0) a 22(0) a21(1) a 22(1) 

a 11 ( 0) a 12( 0) a 11 ( 1) a 12( 1) 

a 2 1(0) a 22(0) a 21( 1) a 22(1) 

a 11( 1) a21(1) a 11(0) a 12(0) 

a 12(1) a 22(1) a 21(0) a 22(0) 

( 4-44) 

(4-45) 

After the calculation of [ uij] • we may return 

to the original model of equation 4-34 which can be 
written: 

[ ( 4-46) 

or in shorter notation: 

( 4-4 7) 

where the operator D is defined by: 

n 
D x(t) = x(t-n) ( 4-48) 
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The spectral matrix of the process is now ob­
tained using a formula given by lfuittle (1954): 

( 4-49) 

wher e 

z "' e 
2ll'fi 

and 

(4-50) 

with [v~ .' (z)] standing for the complex conjugate 
1) 

transpose matrix of [vij(z) ] . 

Equation 4- 49 is valid provided t he series 
x1 (t) and x2(t) have unit variance. 

In t he case studied here [q .. ] is the unit 
lJ 

matrix, t herefore 

and 

[ pt. J' (D) ]- 1, .....,........,....,.t___,,...,.. 
det [Pij(D )J. 

(4-51) 

(4-52) 

The spect ral matrix of the process can be written: 

(1.- 'i I) 

+aa +hz +nz +h~ -+(a b 1 
I 2 2l U . t l U I.: 

(·I !··I I 



(4-55) 

( 4-56) 

The coherence function of the process can then be ex­
pressed as: 

F11(f)F22(f) (4-57) 

After going through some algebra, y2 (f) can be 
written: 

where 

a = 

f3 = 

e = 

A -

T) 

p = 

fJ 

tj, 

v .. 

~ 

2 fJ cos 2rrf + 2 1/1 cos 471! + 

2v cos 6 1rf + 2 ~ cos 81rf + p 

[a + 2{3 cos 211'f - 2b22 cos 4rlJ [k + 

26 cos 2rl- 2b
11 

cos411'fJ 

(4-58) 

a bz z b z 
l+at2+ 22+a22+ 12 

a22 b22 + a12 b12- azz: 

a21 - a22 b21 + at 2 b lt 

- b22 a21 + a12 - b12a11 

b12 btl - a22a21 - b22b21 -a12a11 

ez + TJz + bz 
21 + b:2 + Az 

eb21 + ET) + b12 A + ATJ 

eX+ b21TJ + bt2 TJ 

E b12 + b21 A 

b21 b12 

3. Mathematical Development of the Cross­
Spectral Characteristics of Filtered Series . The 
smoothing of time series by moving average schemes and 
other types of filters is a practice sometimes applieq 
in hydrology and other geophysical sciences. So it is 
of great practi~al importance t o understand cl early 
the different effects that filters can have in the 
cross-spectral characteristics of time series. In 
this chapter, we will study the behavior of the cross­
spectral density function, the coherence f unction and 
the phase function when one or both of the series in 
which the analysis will be performed have been pre­
filtered. 

Let us have two random input functions x1(t) 

related to two output functions y1(t) 

through a linear filter function h(t) by 

means of a simpl e convolution, 

(4- 59) 

( 4-60) 

The c ross-covari ance function between the f i ltered out ­
put f unctions i .s: 

lim 

T~ co 

1 
2T J

T 
y

1
(t) y

2
(t + T) dt c4_61) 

-T 

which can be written : 

s_: x
2
(t+T - s)h2(s)ds =I: h 1 (u) du J~oo h 2(s) ds • 
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lim 1 JT x
1
(t-u) x

2
(t+T-s)dt Joo h

1
{u) du • 

T....,oo IT -T -oo 

J: h2(s) ds 

(4-62) 

In order to go from the time domain to the 
frequency domain , we take Fourier transforms at both 
sides of equation 4-62, 

_1_ a (T) "iWT- _1_ e -\<JT dT • Joo Joo . 
27r -oo Yt Yz e - 211' -oo 

(4-63) 

where w represents the angular frequency (radians 
per unit of time) . 



The left hand side of equation 4-63·· is the 
cross-spectrum between y1 (t) and y2(t) : Gy

1
y

2 
(w) 

Doing t = T + u - s in equation 4-63 we get: 

Ico -iws 1 Joo -iw£ 
h (s)e. ds • - a (£)e df 

2 2tr x
1
x 2 - 00 -CXl 

Therefore, 

J
CXl . 

-lWS 
• h

2
(s) e ds 

-CXl 
( 4- 64) 

Equation 4-64 gives the relation between the 
corss-spectrum of the filtered series as a function of 
the cross-spectrum of the original series and of the 
linear operators h1(u) and h2(s) 

The transfer function of a filter h(t) is 
defined as the Laplace transform of h(t) : 

R(w) "' Jro h(t) e =iwt d t = I R (w) I e · i ¢ (w) 

• C) 

Joo !'.( ~) cos wt dt- i J 00 

h(t ) sin wt dt 

-ro -oo 
Re { R(w)) + i Im { R(w) } ( 4-65) 

where 

I R (w) I = [ (Re { R(w)} ) ~ + (Im { R(w)} ) 
2 

] i 

and 

¢(w) 
-1 = tan 

( 4-66) 

( Im { R(w)} / Re { R(w) } ) (4-67) 

The angle ~(w) represents the phase shift 
which the filtering function h(t) oroduces at the 
frequency w 

For smoothing and filtering functions having 
(n + m + 1) discrete wei ghts, the transfer function is 
computed by the following form of equati on 4-65: 
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m m 
R(w) !: hk cos wk - i !: hk sin wk 

k=-n k=-n (4-68) 

In the spectral analysis of a time series, the 
effect of applying a filter to the series is to multi­
ply the power spectrum by IR(w) 12 , (Siddiqui, 1962). 
When analyzing a single time series, the phase shifts 
will have no effect on the spectral analysis since the 
spectrum suppresses all phase information . This is 
not the case in cross-spectral analysis where the phase 
diagram is a very useful one. So, it is highly de­
sirable that smoothing and filtering functions do not 
shift the phase of waves of any frequency. The shift 
angle can be made equal to zero by requiring that the 
imaginary part of R(w) be zero. This, in turn, can 
be accomplished by requiring the filter function h(t) 
to be even, for if h(t) is even, the terms contain­
ing the sines in equations 4-65 and 4-68 are zero, and 
R(w) is a pure real quantity computed by 

R(w) = 2 Joo h(t) cos wt dt 
0 

for continuous h(t) functions, or by 

n n 
R(w) 

(4-69) 

!: hk cos wk = h 
0 

+ 2 !: hk cos wk 
k=- n k= 1 ( 4-70) 

for smoothing and fi l tering functions having (2n + 1) 
discrete weights. 

Using the definition of R(w) , equat ion 4-65, 
we can write equation 4-64 as 

Rh (w) • ~ (w) 
1 2 

(4-71) 

From equation 4-71 it is seen that the cross­
spectrum of the filtered series 1dl! be different: of 
the cross-spectrum of the original series. 

It is of fundamental interest to know if lin­
ear filters like those of equations 4-59 and 4-60 will 
change the coherence between the series. It js known 
(Siddiqui, 1962) that the individual spectra of the 
filtered series are equal to 

G (w) = IRh/w)la G (w) 
y1 X 

1 
( 4- 72) 

and 

G (w) = I Rh(w)la G (w) y ' x2 2 2 
(4 - 73) 

In this manner the coherence y 2 ( w) can h l' wri ttl'" 
y ly 2 

as: 



'Y; y (w) = 
1 2 

) GYtYz(w)l2 

G (w) G (w) 
Y 1 Yz 

= 

jRh/w)I21Rh2(w)I2 1Gx1x2(w)l2. 

::~~ (w)j 2 G {w) jRh {w)j2 G {w} 
1 x1 2 x2 

(4-74) 

Equation 4-74 shows that the coherence func­
tion of the filtered series is the same as the coher­
ence function between the original series. 
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The main conclusions of this chapter with re­
gard to the use of linear filters before any cross­
spectral analysis is performed may be summarized as 
follows: 

a. The phase function of the filtered series 
is different from the phase function o·f the 
original series except if both filters are 
even , in which case, the phase function will 
remain unchanged. 

b. The cross-spectrum of the filtered series is 
different from the cross-spectrum of the 
original series, their relation being given 
by equation 4-71. 

c. The coherence function will remain unchanged 
after the use of any kind of linear fi l ter. 



CHAPTER V 

DATA ASSEMBLY AND PROCEDURE FOR THE ANALYSIS OF 
HYDROLOGIC SERIES BY CROSS-SPECTRAL TECHNIQUES 

1. Data Selection. One of the aspects this 
dissertation was directly concerned with was to study 
the frequency correlations between hydrologic time 
series and the characteristics of the gain and phase 
functions between them. To attempt this, several sta­
tions were chosen and complete cross-spectral analyses 
were performed between them and groups of other s t a-

~ 
• MonThly Runoff 

tions in the same or different environment. 

Precipitation data consisted of annual and 
monthly series. Only monthly runoff data were ana­
lyzed. Figure 5 .1 shows the location of the stations 
used in the analysis . A detailed description of these 
stations is done in the appendix. · 

1, An11unl M, MorHhly 
Proc,..1p1IOtlllfl 

Fig. 5.1 Geographic distribution of stations used in the analysis. 
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In the analysis of annual precipitation, 
there were 27 stations with an average length of data 
of 62 years per st ation . There were 41 stations with 
monthly precipitation data averaging 57 years per sta~ 
tion. The rainfal l stations were divided into five 
regions in each of which one base stati on was f i xed. 
Complete cross-spectral analyses were t hen made be­
tween the base s t ations and all tho stations i n the 
region. The char acterist ics of the base stations are 
as follows: 

Region No. 1 Pacific Coast (California, 
Oregon, Washington) with 14 stations 
and the base station: San Diego Lat: 
32.733 Long: 117.167 Period of rec­
ords: 1850-1960. 

Region No . 2 Valley Environment (California, 
Oregon) with 8 stations and the base 
station: Sonora Lat: 37.983 Long: 
120 .383 Period of recor ds: 1888-1960 . 

Region No. 3 Mountain Environment (Colorado , 
Wyoming, Idaho, Montana) with 6 stations 
and the base station: Dur ango Lat: 
37.280 Long: 107.880 Period of rec­
ords: 1895-1960. 

Region No. 4 Gulf of Mexico (Texas, Louisi­
ana) with 7 stations and t he base sta­
tion: New Orleans Lat: 29.95 Long: 
90.07 Period of records: 1870-1960. 
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Region No. 5 Plain Regions (Texas, Oklahoma, 
Kansas) with 6 stations and the base 
station: Lampasas Lat : 31 .05 Long: 
98.18 Period of r ecords: 1895-1960. 

There were 37 runoff stations , all of them 
located west of the 117° meridian . The average length 
of series among these stations was 36 years. The base 
station characteristics are: 

Middle Fork American River near Auburn, Cali­
fornia. Lat: 38.92 Long: 121.00 Period 
of records: 1912-1960. 

2. Method of Analysis. Al l the data used were 
previously standardized by the transformation: 

x"' (t) = x(t) - x 
s(x) (S-1) 

where x(t) is the series of values of each station, 

x is the mean of x(t) , and s(x) is the standard 
deviation of the series. Because of the previous 
standardization, the spectral ordinates are all in 
[cycles per unit of time]-1 . 

With the annual data there were used 15 lags 
with a resolution of 0.067 cycles per year . In the 
monthly analysis there were 24 lags with a resolution 
of 0.042 cycles per month . 



CHAPTER VI 

APPLICATION OF CROSS-SPECTRAL TECHNIQUES 
TO HYDROLOGIC TIME SERIES 

1. Analysis of Monthly Precipitation Data. 1-lonth­
ly hydrologic data can be regarded as consisting of 
two parts: periodic and stochastic (Roesner and Yev­
jevich, 1966) 

where 

m(t ) = X + 

x(t) m(t) + z(t) 

!: (a. cos 
2 

'ITjt + b. sin 
) 12 J 

j 

!: x( t) 
t 

(6-1) 

2 ?Tjt 
--rz-) (6-2) 

(6-3) 

and the summation over j can vary from j 1 (com­
mon case for rainfall stations), or j = 1, 2 (fre­
quently found in runoff series) to j = 1, 2, 3, 4, 5 
in some extreme cases . z(t) represents the "noise" 
or random component which for monthly precipitation 
series follows a random independent model and for the 
monthly runoff series follows a first order autore­
gressive process (Roesner, 1966). 

In the monthly precipitation data of regions 
1 and 2, the variance explained by the annual oscil­
lation appears to depend upon the climatic and thermal 

1.0 r' 

o) 

1.0 r" 

b) 

Fig. 6.1 Coherence functions for monthly data or tem­
perature (series No. 1), atmospheric pressure 
(series No. 2) and precipitation (series No. 
3) at Eureka (California) with their corres­
ponding 95% significance levels. 
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conditions of the station, being large where the an­
nual temperature range is small and less pronounced 
where the latter is large. Peak changes in the spec­
trum can be considerable even over short distances: 
at Lakeview, Oregon, where the mean annual temperature 
range is about 40° F, the peak in the spectrum at the 
annual cycle of precipitation is 3.098; at Auburn, 
California, 490 Km. away from Lakeview, where the 
mean annual temperature range is about 33°F, the peak 
in the spectrum is 6.007; in Tatoosh Island, Washing­
ton, where the temperature range is only 13.7°F, t he 
peak is 7 .073 . 

In order to investigate more fully the fre­
quency correlations between temperature, atmospheric 
pressure and precipitation, the cross-spectra and 
partial cross-spectra of these three series were 
calculated for five of the stations located in region 
1. Figures 6 .1 through 6.10 show the coherence and 
partial coherence functions obtained in this analysis. 
It appears from these figures that, for the stations 
considered, there exists a real relation between the 
annual cycle in temperature and the annual cycle in 
precipitation, but only an apparent correlation exists 
between the annual cycles in pressure and precipita­
tion. Notice that the high coherence between the 
annual cycles of pressure and precipitation is in all 
cases non-significantly different from zero when the 
effect of temperature is subtracted from the anal ysis. 
On the other hand, the partial coherence between the 
annual cycles of temperature and pressure is high in 
all but one case . 

1.0 ~~.3 
0.8 

I t 2 

0.6 a ) 

0.4 

0.2 

0 

1.0 r' 
13. 2 

0.8 

0.6 
b) 

0.4 

0.2 

0 c .. 

1.0 Yz~. l 2 ~ 3 
0.8 

0.6 
c) 

Fig. 6.2 Partial coherence functions for month!)' data 
of temperature (series No. 1) , utmosph~·ri~.: 
pressure (series No. 2) and prccipitatio11 
(series No. 3) at Eureka (Californin) with 
their corn,spondi ng 95". si~trli f1cance h·vl'! ~. 
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Coherence functions for monthly data of tem­
perature (series No . 1), atmospheric pres­
sure (series No . 2) and precipitati on (series 
No. 3) at San Francisco (California) with 
their corresponding 95% significance levels . 
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Fig. 6 .4 Par tial coher ence functi ons for monthly data 
of temperature (series No. 1), atmospheric 
pressure (series No. 2) and precipitation 
(series No. 3) at San Francisco (California) 
with their corresponding 95% significance 
level s . 
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Coherence functions for monthly data of tem­
perature (series No . 1) , atmospheric pri:'S­
sure (series No . 2) and precipitation (ser ies 
No. 3) at San Diego (California ) with thctr 
corresponding 95% signifi cance levels . 
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Partial coherence functions for monthly data 
of temperature (series No. 1), atmospheric 
pressure (series No . 2) and precipitation 
(series No. 3) at San Diego (Californi a) 
with their corresponding 95% significance 
level s. 
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Fig. 6.7 Coherence functions for monthly data of tem­
perature (series No. 1), atmospheric pres­
sure (series No. 2) and precipitation (series 
No. 3) at Portland (Oregon) with their cor­
responding 95\ significance levels. 
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Fig. 6.8 Partial coherence functions for monthly dat a 
of temperature (series No. 1), atmospheric 
pressure (series No. 2) and precipitation 
(series No. 3) at Portland (Or egon) with 
their corr esponding 95% significance l evels. 
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Fig. 6.9 Coherence functions for monthly dat a of tem­
perature (series No. 1), atmospheric pres­
sure (series No. 2) and precipitation (series 
No. 3) at Tatoosh Island (Washington) with 
their corresponding 95\ significance levels. 
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Fig . 6 .10 Partial coher ence functions for monthly data 
of umperature (series No. 1) , atmospheric 
pressure (series No. 2) and precipitation 
(series No. 3) at Tatoo~h I~lnnd with thrir 
correspondin~ 95'• s ignificance h:vc l ~. 



Except for Tatoosh Island, the coherence between the 
annual cycles of temperature and precipitation remains 
significantly different from zero when the effect of 
pressure is subtracted from the analysis . This indi­
cates that for these s tations, the annual cycle i n 
pressure is related to the annual cycle i n precipita­
tion only through the annual cycle in temperature. 

Figures 6 .11, 6.12 and 6. 13 show some typi­
ca l phase diagrams obtained in the analysis of the 
series of temperature, atmospheric pressure and precip­
itation for the stations previous ly ment ioned . When 
the phase is about 180 degrees in all the frequency 
range, it indicates that when a given frequency com­
ponen~ of one ser ies increases, the corresponding 
frequency component o f the other series decreases and 
therefore the relat ionship between the variables is 
an i nverse one. Both t he phase and partial phase be­
tween temperature and at mospheric pressure seems to 
oscillate about 180° This is also the case for pre-
cipitation and atmospheric pressure which should be 
expected from physical reasons when precipitation is 
caused by low pr essure centers. The phase and partial 
phase between the series of temperature and precipita­
tion exhibit much larger variations than for t he pre­
vious series . 

Tables 6.1 and 6.2 present the cross-spectral 
characteristics at the annual frequency for some of 
t he stat ions considered in regions 1 and 2 . Up to 
distances of 1000 Km i n region 1, the gain is very 
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Fig. 6.11 a) Phase diagram for monthly data of tem­
perature and atmospheric pressure at 
Eureka (California) . 

b) Partial phase diagram for the same series 
of a) when precipitation is subtracted 
from the analysis 
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Fig. 6.12 a) Phase diagram for monthly data of tem­
perature and precipitation at Eur eka 
(California) . 
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b) Partial phase diagram for the same series 
of a) when atmospheric pressure is sub­
tract ed from the analysis . 
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Fig. 6.13 a) Phase diagram for monthly data of atmos­
pheric pressure and precipitation at 
Eur eka (California). 

b) Partial phase diagram for the same series 
of a) when temperature is subtracted 
fr om the analysis . 



TABLE 6.1 CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS OF DISTANCE 
FOR MONTHLY PRECIPITATION SERIES (REGION NO. 1) 

Base station: San Diego WB APT. 

Station Years Distance from Coherence 95% Gain Phase 95% 
Name I. D. Lat. Long. of base station ya (I cpy) significance IH(1 cpy)l 6 (1 cpy) conficence 

records used (Km.) level for ya (radians) bands for 8 

Ojai 4. 640 34 .. 450 119. 250 56 280 ' 0.908 0, 320 I. 000 - 0. 08 1 ±0.034 

San Luis Obispo 4. 785 35. 300 120.667 9 1 445 t 0 . 904 0. 220 0,907 -0.003 ±0. 01 7 

Big Sur St. Park 4. 079 36.250 121.783 46 581 ' 0.898 o. 355 0. 847 -0.017 ±0.034 

Antioch F . Mills 4. 023 38. 017 121. 767 81 756 ' 0 ,867 0. 241 0. 884 0.056 ±0,026 

Fort Ross 4. 319 38.517 123. 250 85 861 • 0.805 0. 230 0.820 0. 074 ±0.063 

Fort Bragg 4.316 39, 950 123.800 61 1120 t 0. 859 0. 300 0. 782 0. 105 ±0. 069 

Cottage Grove 35. 190 43.783 123.067 44 1480 • 0.800 o. 365 0. 755 0. 235 ±0.071 

longview 45 .477 46. 167 122.917 36 1624 t 0.747 0. 401 0. 770 0. 337 ±0. 089 

Tatoosh Island 45, 83 3 48, 383 124,733 77 11,1$7 • o. 764 0. Z48 0. 718 0.446 ±0. 103 

t(northward ) ~(southward) 

"' Vl 

TABLE 6 . 2 CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS OF DISTANCE 
FOR MONTHLY PRECIPITATION SERIES (REGION NO . 2) 

Base s tation: Sonora 

Station Year s Distance from Coherence 95o/o Gain Phase 95% 
Name I. D. Lat. L ong. of base s tation y z(l cpy) significance IH(i cpy) j 6( 1 cpy ) confidence 

records used (Km.) level for y z (radians ) bands for 8 

Auburn 4. 038 38.900 121.067 6 1 133 t 0.975 0.300 0.959 0. 041 ±0. 000 

Chester 4. 170 40.300 121.217 50 287 • 0. 949 0. 341 0. 952 0.098 ±0. 008 

Wasco 4. 945 35.600 119.333 6 1 287 I 0. 890 0 .300 I. 016 - 0. 114 ±0.010 

:\tcCloud 4. 545 41.267 122. 133 50 444 + 0. 924 o. 341 0. 950 0. 114 ±0.008 

Lakeview 35.467 42. 183 120. 350 48 490 4 0.728 0.345 I, 112 -0.056 ±0. 103 

Lytle Creek 4.522 34. 200 11 7. 450 55 5 18 I 0. 930 0 .360 I . 082 0.000 ±0. 017 

Estacac!a 35.269 4 5. 267 122. 317 52 854 t 0. 868 0.331 0.899 0. 268 ±0.005 

t (nor•hwa.rd) Hsouthward) 
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Fig. 6. 17 Examples of cross-correlation functions 
for monthly data of region 1 with their 
corresponding 95\ signif icance levels. 
Base station #4.774. 
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Fig. 6.18 a) Average cross-correlation function 
for monthly data of region 1 
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Fig. 6 .19 Examples of cross-correlation functions 
for monthly data of region 2 with their 
corresponding 95' significanc~ l evels. 
Base station N4.835. 
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Fig. 6.20 a) Average cross-correlation function for 
monthly data of region 2 

b) Variance of a). 
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The result from the phase diagram will give 
much more accurately the difference in phase between 
the annual cycles in both stations due to the fact 
that when working in the time domain we consider each 
process as a ~~hole 1dthout any consideration of fre­
quency components . On the other hand, there are many 
cases in which the engineer prefers to cons ider each 
process as a. whole and to try the prediction in time 
of the general relations of rainfall at both stations . 
Then covariance analysis seems t he most appropriate 
one. The series of rainfall at Tatoosh Island and 
San Diego are shown in Figure 6.21 . The peak in pre­
cipitation at San Diego occurs two months later than 
the peak at Tatoosh Island, as result which is in 
agreement with the value obtained from the cross­
correlation function. 

Some examples of the gain and phase functions obtained 
for regions 1 and 2 are shown in Figures 6.22, 6.23, 
and 6.24. 

[n general, for the precipitation stations 
located in regions 3, 4 and 5, no significant peaks 
were detected in the spectra. For these stations the 
coherence was low over the frequency range and only 
when the stations were very close was the coherence 
significantly different from zero although without 
peaks . Figures 6.25 and 6 . 26 show t ypical coherence 
and cross -correlation functions for regions 3, 4 and 5. 
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Fig. 6.21 a) Mean monthly precipitation at San Diego 
(California) 
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Fig. 6.22 Examples of gain functions for mont hly data 
of region 1 Base station H4.774 
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Fig. 6 . 23 Examples of gain functions for monthly data 
of region 2 Base station #4.835 
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a) and b) Exampl es of phase functions for 
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#4,774. c) Example of phase function for 
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2. Analysis of ~tonthly Runoff Data. Some ex­
amples of coherence and cross-correlation functions 
found in monthly runoff data are shown in Figures 6.27 
and 6.28. The average values of these functions and 
their respecti ve variances ar e shown i n Figures 6 . 29 
and 6.30. Table 6.3 presents the cross-spectral 
characteristics at the annual frequency for some of 
the stati ons considered in the analysis . Contrary to 
the case of monthly precipitation, there is no defi­
nite trend in the amplitude of the annual runoff cy­
cle, a fact that is refl ected in the lack of a trend 
in the gain function. The explanation of t his lies in 
the influence of watershed characteristics on the 
properties of the runoff time series and also in the 
influence of the evaporation and storage which vary 
from region to region. 

The coherence at the annual cycle a lways 
has a highly significant meaning, and there is a strong 
correlation between the annual osci llation of these 
stations . In many cases , the semi-annual cycles were 
also found to be strongly correlated. For distances 
up to 370 Km the coherence was significantly differ­
ent from zero over the frequency range , meaning t hat 
one of the series could be completely related to the 
other one because of the interdependence of all the 
correspondent frequency components . 

Some of the phase and gain diagrams obtai ned 
in the study are shown in Figures 6 . 31 and 6.32. From 
the phase diagrams i t i s observed that stations south 
of the base station have runoff series that lag be­
hind the base series. On the other hand, stations lo­
cated north of the base station have series whose fre­
quency components precede those of the base stat ion . 
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Fig. 6.27 Examples of coherence function for monthly 
runoff s eries wi th t heir ~orresponding 95% 
significance l evels . Base station #112.402 
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for monthly runoff series with their cor­
responding 95% significance l evels. Base 
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TABLE 6 . 3 CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS 
OF DISTANCE FOR ~10NTHLY RUNOFF SERIES 

Rase station: Middle Fork American River at Auburn (Calif.) 

Station Years Distance from Coherence 95% 
Name I. D. Lat. Long. of base stati~m y 3 

( 1 cpy) significance 
records used {Km.) level for yz 

Thomes Creek 112. 308 39.88 

Falls Creek 112. 137 37 .97 

Sal mon River Ill. 393 41 . 38 

Kern R iver 112.001 35 . 93 

McKenzie River 14.278 44.13 

Toutle River 14.419 46.33 

Murrieta Creek It I. 059 33. 48 

Hoh River 12. 050 47 .80 

t (northward) •< southward) 
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Fig. 6.32 Exampl es of gain functions for monthly run­
off series. Base station Nl l 2. 402 

3. Joint Analysis of Monthly Rainfall and Month­
lv Runoff in a Natershed. Two cases were considered 
here: 

a) Single i nput system: when all the pre­
cipitation was considered coming from one 
station . 

b) Multiple input system: when precipita­
tion at different stations was considered 
as different inputs. 

Single input system. 35 years of monthly 
precipitation data at Auburn wit h the corresponding 
discharges of tho Middl e Fork American Ri ver at Auburn 
were used . The anal ysis was performed with a maximum 
of 36 lags. Figure 6 .33a) shows the coherence func­
tion between both series . It indicates a strong cor­
relation between the annual cycl es and an almost null 
correlation between the semi-annual cyc l es . For fre­
quencies l arger than 1 cpy , the coherence function is 
not s igni ficantly different from zero and its shape 
i ndicates that in a monthly basis the rainfall-runoff 
proces s is far from being linear . 

The phase diagram is shown in Figure 6.33b), 
i t seems to osci llate ar ound a value of 0 .652 radians, 
or in other words , the precipitation series appears 
to be , as ~whole, 1.24 months ahead of the runoff 
series . The sign test rejects at the 95% probability 
level , the hypothesis that the phase function is oscil ­
l~ting around zero . 

Figure 6.34 shows the spectra of both series 
together with the spectrum of the residual terms as 
defined i n Chapt er III. From the spectra of the 
residuals it is seen that the annual cycle of one 
series could be completely expl ained by means of a 
cyclical regression with the other series . This kind 
of regression was carried out with the help of the 
phase di agram and the gai n function , the later one 
shown in Figure 6.35. A straightforward harmonic 
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Fig . 6.33 a) Coherence function between monthly pre­
cipitation at Auburn and monthly runoff 
of the ~1iddle Fork American River at Au­
burn with 95\ significance level . 
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Fig. 6.34 Compar ison of spectra obtained in the joint 
analysis of monthly precipi tation at Auburn 
and monthly runoff of the Middle Fork 
American River at Auburn . 
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Fig . 6.35 Gain function of monthly runoff of the 
Middle Fork American River at Auburn 
based on monthly precipitation at Auburn. 

analysis gave for the annual cycle of the Middle Fork 
American River the expression: 

y(t) 0 . 947cos (~; t + 0. 354) (6-4) 

Similarly, for the precipitation at Auburn, it was 
obtained: 

x(t ) 0. 969 cos ( ~; t - 0. 8 20 ) (6- 5) 

The gain and phase at l cpy were 0 .951 and 
1.145 radians, respectively. Using equation 3-5 the 
predicted annual cycle of the Middle Fork becomes: 

0.969 x 0.95 1 cos ( ~; t - 0.820 + 1. 145) 

(6- 6) 

0.922 cos U; t + 0. 325 ) (6- 7) 
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Figure 6.36 shows a comparison of equations 
6-4 and 6- 7. This type of regression holds theoreti­
cally between any corresponding frequency components 
but it is most useful for those components which ex­
plain large percentage of the variance of the series. 

Multiple inputs system. The partial cyclical 
regressions intended here were not successful , never­
theless valuable experience was obtained. 

Three watersheds were studied here in which 
precipitation at different places of the watershed 
were considered as different inputs producing as sol e 
output the runoff at the outlet. 

The practical difficulty in obtaining reason­
able r esults arise from the form of the equation for 
the partial t r ansfer function (equation 3-23). 

H
1
(f) 

s 
1y· 23 

(6-8) 

where the partial cross spectrum s11. 23 .... NCf) has 

for the case of two inputs the form (equation 2-53): 

(6-9) 

For the multiple inputs case s11 . 23 .... N(f) 

has expr essions similar to equation 6-9 and it is ob­
served that we need inputs not very well correlated, 
Yt2 Cf) < 1 , in order to obtain meaningful results 

for H1(f) . This has proved to be a most difficult 

y(t) 

·•<> 

Fig. 6.36 1) Actual annual cycl e of Middle Fork Amer­
ican River at Auburn. (Eq . 6-4) 

2) Annual cycle of Mi ddle Fork predicted in 
basis of precipitation at Auburn. 
(Eq . 6-7) 



case for monthly rainfall data coming from stations in 
the same watershed although it is probable the theory 
could be applied successfully in other geophysical 
problems. The fact that y 2 (f) is close to one for 
monthly rainfall data coming from stations in the 
same watershed shows that one station is representa­
tive of the monthly rainfall regime in the watershed 
and therefore it is unnecessary to analyze the system 
as one with multiple inputs. 

4 . Analysis of Annual Precipitation Data. The 
analysi s of annual precipitation data did not show any 
significant peak in the spectra. The coherence dia­
grams vary drastical ly from station to s~ation in all 
the regions studied and a common peak or feature in 
them does not appear to exist. 

Some examples of the coherence and cross­
correlat ion functions found are shown in Figures 
6.37 and 6.38 with the corresponding 95% significance 
levels. 

From the spectra it is concluded these se­
ries can be considered as "white noise" or random in­
dependent data. When two stations were at short dis­
tance one from the other, it was common to find noise 
correlation at one or several frequencies (Figure 
6.37a). When the distance between the stations in­
creases the coherence function is not significantly 
different from zero in all the frequency range (Fig­
ures 6 . 37b and 6 .37c). For nearby stations l ocated 
in the same environment, it is common to find signi­
ficant zero-lag correlation (Figure 6.38a) meaning 
there is a strong relation in the rainfall at the 
same year in both stations. This significant zero­
lag correlation completely disappears when the dis­
tance between the stations increases . 
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Fig. 6 .37 Examples of coherence functions for annual 
data of region 1 with their corresponding 
95% significance levels. Base station 
#4.774. 
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Fig. 6.38 Examples of cross-correlation functions for 
annual data of region l with their corres­
ponding 95% significance levels. Base 
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S. The Applfcation of Cross-Spectral Analysis 
in the Study of Hydrologic Stochastic Processes. 

First order Markov linear process. Cross­
spectral methods are used here to test the assumption 
of a first order Markov linear generating process in 
two runoff time series . Use has been made of the 
theory developed in Chapter IV. 

As an example, a complete analysis was per­
formed for annual standardized discharge data of the 
Wolf River at New London (Wisconsin) and annual stand­
ardized discharge data of the Fox River at Berlin 
(Wisconsin). The data used was from 1898 to 1957 and 
the analysis was done wtih 12 lags. The reason for 
using annual data in thi s example is that Yevjevich 
(1964) has shown that 1st order autoregressive schemes 
may in many instances fit sufficiently well the 
patterns in the sequence of annual river flows. 

Figures 6.39 and 6.40 present the estimated 
power spectra and also the theoretical ones obtained 
from equations 4-31 and 4-32. The estimated coherence 
function and the constant value obtained from equation 
4-33 are shown in Figure 6.41. Considering that all 
the data is obtained from a limited sample, the fit 
can be considered a good one. 

Second order Markey linear process. Use has 
been made of the theory developed in Chapter IV. 

As an example we have used two of the rivers 
analyzed by Quimpo (1967): Boise River near Twin 
Springs (I daho) and St. Maries River near Lotus 
(Idaho). 
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Fig. 6.39 Power spectrum of the Wolf Ri ver' s annual 
standardized flows . 
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Fig. 6 .40 Power spectrum of the Fox River ' s annual 
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Fig. 6.41 Coherence functi on between the annual flows 
of the Wolf and the Fox Rivers. 

Figure 6 .42 (after Quimpo, 1967) shows the 
spectral density of the original series of daily river 
flows of Boise River and the spectral density of the 
residuals obtained afte·r removal of the annual cycle 
and its first three sub-harmonics. In the analysis 
performed in this example the period of record used 
was from 1950 to 1960 and the residuals were previous­
ly standardized. There were 600 lags throughout the 
analysis. 

The covariance matrices were in this case: 

and 

1 . 000 0.174 0 . 901 0.154 

[a 1/o) J 
0.174 1 .000 0. 169 0 .109 

0.901 0.169 1. 000 0. I 74 

0. 154 0, 109 0. t 74 1 .000 



The matrix of coefficients became equal to: 

1. 166 - 0.006 - 0. 286 0.006 

0.1 83 0.086 -0 . 034 0.040 

[ uij) = 
0 0 0 

0 0 0 

In this manner, the fol lowing two equations were ob­
tained for the standardized stochastic components of 
the above rivers : 

where the subscript 1 refers to the Boise River and 
the subscript 2 refers to the St. Maries River. 

Equation 6-58 gave for the coher ence function 
the expression: 

-0.016 cos l rl- 0.008 cos 4rl+0.004 cos 6rl 

+0. 0004 cos 871'[ + 0.036 

-yl(f)=--------------~-­
[1.010 - 0 .1 66 cos lri - 0.080 cos 4rl] (2.476 

- 3. 010 cos 211'f+ 0. 572 cos 4rl] 

_ 0 286x (t-2)+ 0 .006x
2
(t- 2)+z

1
( t) d d Figure 6.43 shows a comparison of the obtain-

. 1 I e an theoreti cal coherence . 

g ( f ) 

Fig. 6.42 Boise River spectral densities: ( 1) daily 
flows, (2) stochastic components of daily 
flows (after Quimpo, 1967). 
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CHAPTER VII 

CONCLUSIONS 

The investigations performed her~ gave rise 
to the following conclusions: 

1) In a specific application it seems there 
there are two main considerations which should enter 
into the choice between cross-correlation analysis 
and cross spectrum: 

a) the use to be made of the estimated 
quantities, 

b) ease of physical interpretation. 

If the ultimate objective of the analysis 
is the construction of models like equation 3-5 then 
cross-spectrum certainly provides the answer to the 
problem. Covariance analysis could be used for fre­
quency response studies, but the calculations would 
be considerably more difficult . Also as indicated in 
Section 3-1 cross-spectrum has a direct physical in­
terpretation in this case. 

Since prediction is done in time, it is 
natural to work in the time domain. For the simpler 
linear prediction models, since the parameters are 
estimated by functions of the auto- and cross- cor­
relation, it is natural to work with tnese quantities. 

2) A highly significant coherence between 
the annual cycles of hydrologic time series has been 
observed, making it possible to predict the annual 
oscillation in one station on the basis of the annual 
oscillation at another station. 

3) For stations located in the Pacific 
Coast of the United States, the amplitude of the an­
nual cycle in precipitation appears to decrease when 
advancing in the northerly direction. Up to distances 
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of 1000 Km the annual cycle can be considered practi­
cally the same for all stations in the region. On 
the other hand, no similar trend was observed in the 
runoff stations. 

4) No significant coherences were observed 
in the annual series of precipitation and runoff ex­
cept in very close stations for which the coherence 
was high in all the frequency range. 

5) The coherence function may be used as 
a measure of linearity of the rainfall-runoff process. 
In the monthly basis this process appears to be highly 
nonlinear. 

6) By partial cross-spectral analysis it 
was found that in the Pacific Coast of the United 
States the annual cycle in temperature is highly cor­
related with the annual cycle in precipitation, but 
the annual cycle in atmospheric pressure seems to be 
related to the cycle in precipitation only throughout 
the cycle in temperature. 

7) Coherence analysis stands as a powerful 
tool to analyze and test generating processes commonly 
used in hydrology. Special mention should be given 
to the coherence function between two 1St order 
autoregressive processes which was proven to be equal 
to a constant independent of frequency. 

8) The use of prefiltering or smoothing be­
fore the series have been analyzed was shown to change 
the cross-spectrum between the series but the coher­
ence remains the same if the linear filters are used. 
The phase function will be altered unless even filters 
are used . 
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APPENDIX 1 

PRECIPITATION STATIONS USED FOR THE INVESTIGATIONS 

0 Station used with monthly and annual data 
>:< Station used with monthly data only 

~·* Station used with annual data only 

Years Type 
Station [dent. Name of Station Lat. T ,eng. of Record of Data 

REGION NO. 1 

4. 023 Antioch F . Mills 38. 017 121. 767 8 1 0 

4. 079 Big Sur State Park 35. 250 121. 783 46 0 

4. 291 Eureka 40. 800 124. 167 45 * 
4. 316 Fort Bragg 39. 950 123. 800 61 0 

4. 319 Fort Ross 38. 517 123. 250 85 0 

4. 640 Ojai 34. 450 119.250 56 0 

4. 774 San Diego WB Apt 32. 733 117. 167 111 0 

4.777 San Francisco WB 
Apt 37 . 800 123. 017 45 * 

4. 785 San Luis Obispo Poly 35. 300 119. 250 91 0 

35. 190 Cottage Grove 43. 783 123.067 44 0 

35. 675 Portland WB 4 5. 517 122. 667 45 * 
45. 477 Longview 46. 167 122. 9 17 36 0 

45. 833 Tatoosh Island WB 48. 31!3 124. 733 77 0 

REGION NO. 2 

4. 038 Auburn 38. 900 121. 067 61 0 

4. 170 Chester 40. 300 121. 217 50 0 

4. 522 Lytle Creek PH 34. 200 117. 450 55 0 

4. 545 McCloud 41.267 122. 133 50 0 

4. 835 Sonora 37 . 983 120. 383 73 0 
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APPENDIX 1 

PRECIPITATION STATIONS USED FOR THE INVESTIGATIONS-Continued 

0 Station used with monthly and annual data 

* Station used with monthly data only 

** Station used with annual data only 

Years Type 
Station !dent. Name of Station Lat. Long. of Record of Data 

REGION NO. 2 

(Continued) 

4. 945 wasco 35. 600 119. 333 6 1 0 

35. 269 Estucada 2 SE 45. 267 122. 317 52 0 

35. 467 Lakeview 42. 183 120. 350 48 0 

45.704 Rimrock Teton Dam 46. 650 121. 133 5 1 0 

R;EGION NO. 3 

5. 243 Durango 37. 283 107. 883 67 0 

5. 762 Shoshone 39. 567 107. 233 51 0 

10. 271 Dubois Exp. Station 44. 250 112. 200 39 * 

10. 628 Driggs 43. 733 11 1. 117 5 1 ** 

10. 808 Salmon 45. 183 113. 883 50 0 

10. 814 Sand Poi nt Exp. 48. 283 116. 567 50 0 
Station 

24. 279 Saint I gnatius 47. 3 17 114. 100 52 ** 

48. 091 Border 3N 42. 250 111. 033 59 ** 

48. 407 Green River 41.533 109. 483 51 0 
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APPENDIX 1 

PRECIPITATION STATIONS USED FOR THE INVESTIGA TIONS-Continued 

0 Station used with monthly and annua l data 

* Station used with monthly data only 

** St ation used with annual data only 

Years Type 
Station !dent. Name of Station Lat. Long. of Record of Data 

REGION NO. 4 

16. 470 Tennings 30. 23 92. 67 63 * 
16. 666 New Or leans 29. 95 90. 07 9 1 * 
41. 061 B eaumont 30. 08 94. 10 68 * 
41. 318 Flatonia 29. 68 97. 10 53 * 
4 1. 343 Galveston WB City 29. 30 94. 83 89 * 
4 1. 35 1 Geor g e West 28. 35 98. 12 45 * 
41. 597 Mission 26. 22 98. 32 40 * 

REGION NO. 5 

14. 643 Plains 37. 27 100. 58 5 1 • 
14. 664 Quinter 39. 07 100. 23 30 * 
41. 408 Henderson 32. 15 94. 80 52 * 
4 1. 502 Lampasa s 3 1. 05 98. 18 66 * 
41.7 21 Post 33. 20 101. 37 44 * 
41. 933 Vega 35. 25 102. 43 30 * 
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APPENDIX 2 

MONTHLY RUNOFF STATIONS USED FOR THE INVESTIGATIONS 

No. Years 
Station Ident. St ation Name Lat. Long. Area of Record 

14. 049 Strawberry Creek AB Slide Creek Nr. 
Prairie City, Oreg. 44.33 118. 65 7. 20 30 

14. 059 Middle Fork John Day River at Ritter, 
Oreg. 44.88 119. 13 515. 00 31 

14. 064 John Day River at Service Creek,Oreg. 44. 80 120. 00 509. 00 31 

14. 14 1 Lake Creek Nr. Sisters, Oreg. 44. 43 121. 73 22. 20 45 

14. 241 Little Sandy Riv er Nr. Bull Run,Oreg. 45. 42 122. 17 22. 30 41 

14. 278 McKenzie River Nr. Vida, Oreg. 44, 13 122.47 930. 00 36 

14. 359 Clackmas River at Big Bottom, Oreg. 45, 02 121, 92 136, 00 40 

14. 382 East Fork Lewis R iver Nr . Weisson, 
wash. 45. 83 122.47 125. 00 31 

14. 390 Cowletz River at Packwood, Wash. 46, 62 121, 68 287. 00 31 

14, 419 Toutle River Nr. Silver Lake, Wash, 46.33 122, 7 3 474, 00 3 1 

14.438 Wilson River Nr. T illanook, Oreg. 45. 48 123. 72 159. 00 30 

12. 001 Naselle River Nr. Naselle, Wash. 46, 37 123. 7 5 55. 30 31 

12. 006 North River Nr. Raymond, Wash. 46. 82 123.85 219. 00 33 

12, 040 Sat sop River Nr. Satsop, Wash. 47, 00 123, 50 290. 00 3 1 

12. 047 Quinault River at Quinault I..ake,Wash. 47, 47 123. 90 264. 00 49 

12. 050 Hoh River Nr. Spruce,Wash. 47. 80 124, 10 208. 00 34 

12. 127 Carbon River Nr. Fairfa x,Wash, 47. 03 122. 03 78. 90 31 

12. 261 North Fork Stillaguamish Rv. Nr. 
Arlington, Wash. 48.27 122. 05 269. 00 32 

12. 667 North Fork Ahtanum Creek Nr. 
Tampico, Wash. 46. 57 120. 92 68. 90 :w 

43 



APPENDIX 2 

MONTHLY RUNOFF STATIONS USED F OR THE INVESTIGATIONS-continued 

No. Years 
Station Ident. Station Name Lat. Long. Area of Record 

112. 001 Kern River Nr. Kernville, Calif. 35. 93 118. 48 865. 00 48 

112. 032 North Fork Kaweah River at Kaweah, 
Calif. 36. 48 118. 92 128. 00 49 

112. 066 Mono Creek Nr. Vermilion Valley, 
Calif. 37. 37 118. 98 92. 00 39 

112. 112 Chowchilla Rv. at Buchanan Dam 
Site.Calif. 37. 22 119. 98 238. 00 30 

112. 120 Merced River at Happy Isles Br idge 
Nr. Yosemite.Calif. 37. 73 119. 55 18 1. 00 45 

112. 137 Falls Creek Nr. Hetchy Hetchy,Calif. 37. 97 119. 77 45. 20 45 

112. 259 Hat Creek Nr. Hat Creek,Calif. 40. 68 121. 42 122. 00 30 

112. 304 Mill Creek Nr. Los Molinos,Calif. 40. 05 122. 02 134. 00 32 

112. 308 Thomes Creek at Paskenta,Calif. 39. 88 122. 55 188. 00 40 

112. 402 Middle Fork American River Nr. 
Auburn, Calif. 38. 92 121. 00 616. 00 49 

11 1. 059 Murrieta Creek at Temecula,Cali.t: 33. 48 117. 15 220. 00 36 

111. 066 Arroyo Trabuco Nr. San Juan Capistrano, 
Calif. 33. 53 117. 67 36.50 30 

111. 083 Cajon Creek Nr. Keenbrook,Calif. 34. 27 117. 47 40. 90 40 

111. 153 Santa Anita Creek Nr. Sierra Madr e, 
Calif. 34.20 118. 02 10. 50 44 

111. 393 Salmon River at Somesbar,Calif. 41. 38 123. 47 746. 00 37 

111. 4 11 Smith River Nr . Crescent City,Calif. 4 1.78 124. 05 6 13. 00 30 

10. 275 Big Rock Creek Nr. Valyermo, Calif. 34. 42 117. 83 23. 00 37 

10. 278 Convict Creek Nr. Mammoth Lakes, 
Calif. 37. 62 118. 85 18. 70 35 
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A(f) 
1\ -.J 

c (f), c (f), c (f) 
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APPENDIX 3 

LIST OF SYMBOLS 

Definition 

Cross-amplitude function 

True, smoothed estimate, and raw estimate of the 
co-spectrum 

Mathematical operator 

Frequency 

True, smoothed estimate , and raw estimate of the 
physically realizable one-sided power spectrum 

True, smoothed estimate, and raw estimate of the 
physically realizable one-sided cross-spectrum 

True, and estimated spectral density 

Frequency response function 

True, and estimated, gain function 

Unit impulse response function 

True , smoothed estimate, and raw estimate of the 
quadrature spectrum 

Transfer function 

Two-sided power spectrum 

Two-sided cross-spectrum 

Residual or par tial spectrum 

Standard deviation of the series x(t) 

Complex random variable 

Complex conjugat e of X 

Sample function of a stationary process 

Stationary random process 

Predicted y(t) 

Residual random variable 

True, and estimated, autocovariance function of 
a stationary process 

True, and estimated , cross-covariance function br­
tween two st~tionary processes 

True, and estimated, coherence function 

True, and estimated , partial coherence function 

True, and estimated, phase function 

True, and estimat ed, purtial phusl' function 
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Symbol 

11 (t). x 
X 

APPENDIX 3 

LIST OF SYMBOLS - Continued 

Definition 

True , and estimated, mean value of a stationary 
process 

Autocorrelation function 

Partial correlation coefficient 

Variance of the series x(t) 

System phase factor 

Angular frequency 
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