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ABSTRACT

The main objective of this paper is to study the potentials of
cross-spectrum and multiple cross-spectrum for the analysis of hydro-
logical data.

Groups of precipitation and runoff stations were selected in dif-
ferent climatic environment and complete cross-spectral analyses were
performed between those stations. The coherence and partial coherence
functions were used for the study of frequency correlations between the
series and they show that there exists a very strong correlation between
the annual cycles of the stations. Along the Pacific Coast of the United
States the annual cycle in precipitation appears to be basically the same
up to distances of 1000 Km.

Cyclic regression analysis with the use of the gain and phase func-
tions is shown to work correctly in hydrologic time series. This type
of regression may be very useful in regions where frequency components

account for a large percentage of the variance of the series.

Cross-spectral characteristics of the moving average and autore-
gressive processes are shown to be a powerful tool in testing and analyz-
ing these types of generating processes in hydrology. Special signifi-
cance has the coherence between two 1St order autoregressive processes

which is shown to be equal to a constant independent of frequency.

The effects of smoothing or pre-filtering in the cross-spectral
properties of two series are studied and recommendations made when work-

ing with this practice which is frequently used in hydrology.

ix



THE APPLICATION OF CROSS-SPECTRAL ANALYSIS TO HYDROLOGIC TIME SERIES

by Ignacio Rodriguez - Iturbe*

CHAPTER I

INTRODUCTION

1. Significance of the Study. Many studies have
been performed with regard to the spectral characteris-
tics of hydrologic data, but problems involving the
simultaneous behavior of two or more series have not
been worked on in a wide variety of fields of applica-
tion, although enough has been done to point the way
and suggest the possibilities of hydrologic spectral
analyses.

There is an increasing number of problems in
the geophysical sciences, which can be approached and
solved by multiple regression analysis. They can also
be effectively studied by multiple spectral techniques
which are precise analogs of multiple regression in
spirit and, if care is taken in choice, in the algebraic
form of their basic equations (Tukey, 1961). The dif-
ferences which arise in the development stem from:

(a) the fact that regression goes on sepa-
rately at each frequency, and

(b) the fact that regression coefficients
take complex values rather than real values, which
enables one to learn more about the underlying relation-
ship.

In studying time series, as in its more clas-
sical situations, regression analysis is a more sensi-
tive and powerful form of analysis than variance com-
ponent analysis whenever there is a suitable regression
variable. As a consequence, one¢ major reason for
learning about spectrum analvsis is a foundation for
learning about cross-spectrum analysis (Tukey, 1961).

2. Main Objectives of This Study. The main

objective of this study is to look into the possibili-

ties of the still young techniques of cross-spectrum

and multiple cross-spectrum for the analysis of hydrolo-
gic data.

Two general approaches may be taken when
analyzing interrelations between hydrologic data.
first approach is to represent a given process by a
multidimensional model and then study the characteris-
tics of this model, specifically the covariance and
spectral matrices. The second approach is to consider
each series as a realization of the process and study
the interrelations between these realizations. Both
approaches are considered here.

The

Five specific aspects are specially stressed:

(1) The use of the coherence and the partial
coherence (defined in Chapter II-3) as correlation
measures between the different frequency components of
hydrologic time series. Also, how these measures com-
pare with the classical time-domain methods.

(2) Frequency regression analysis of hydrolo-
gic time series by using the gain function (defined in
Chapter III-1) as a regression coefficient at each
frequency.

(3) Potentials in using cross-spectral analy-
sis to study input-output relationships in hydrologic
systems.

(4) Cross-spectral characteristics of genera-
ting processes in common usage in hydrology.

(5) Effects of smoothing of time series on the
coherence and phase functions between two series.

* Assistant Professor of Civil Engineering, Universidad del Zulia, Maracaibo, Venezuela.



CHAPTER II

GENERAL MATHEMATICAL TECHNIQUES FOR CROSS-SPECTRAL ANALYSIS

1. Stationary Random Processes, A random process
[xk ()] ,-=<t <= , is an ensemble of real valued

or complex valued functions which can be characterized
through its probability structure. The variable t can
represent any characteristic of a process, although for
convenience it will be interpreted as time in the fol-
lowing discussion. Each particular function X () &

where t is a variable and k 1is fixed, is called a

sample function. In practice a sample function may be
thought of as the observed result of a single experi-

ment.

A particular sample function X (t) is, in

general, not suitable for representing the entire ran-
dom process. It is one of the main goals of statistics
to estimate the properties of the entire process on the
basis of particular sample functions.

Consider two,arbitrary random processes
[xk (t)] and [yk (t)] with mean values

2 [xk(t)]
B [yk“)]

Their autocovariance functions are defined at
arbitrary fixed values of t and t - 1 , by

u(t) (2-1)

(2-2)

uy (t)

ax(t. t=7)= E [‘xk(t} - ux{t)] (xk(t--r} - ux(t-'r]]]tz_”
@ (t, t=r)= E [0 - uy(t]) (¥, (t=7) - uy(t--r)]](z-«u

Similarly, the cross-covariance function is defined by
- = - - - - 2‘5
@, (ttr) = E [[x,0)=u ()] {5 (=) u (t=)) Jc2-5)

In general, all the preceding quantities vary
for different values of t and =

Other statistical quantities can be defined
over the ensemble by fixing three or more times. The
probability structure is thus described in finer and
finer detail by increasing the number of fixed times.
1f all possible probability distributions involving
X (t) are independent of the absolute times t tz .

and are only function of the intervals

e s tn 3

Tlsza"':Tn: :
be strongly stationary. If only the first "n" probabi-
lity distributions are independent of the absolute
times, the process is called nth-order stationary. In
order to prove nth_order gtationarity it is only neces-
sary to prove that the nt probability density is
independent of absolute times because the first (n-1)

then the process is said to

probability densities are obtained from the nth density
by successive integrations.

In the special case of a Gaussian independent
process, the mean value and the covariance function
provide a complete description of the underlying pro-
bability structure. In this case, second order sta-
tionarity or weak stationarity is equivalent to strong
stationarity because the former implies the mean and
covariance function are independent of absolute times
and this inturn implies all the possible probability
distributions are independent of absolute times be-
cause all of them may be derived from the mean value
and the covariance function,

2. Spectr e ctions. It will now be
assumed that for the two stationary processes [xk (t)]

and [yk (t)] , the functions a (1) , a (1) and
uxy{t] exist and have Fourier transforms Sx(f)’ Sy(f)
and sxy(f) given by:

s ~2mfri
sx(r) B J-m crx(ﬂ e dr (2-6)
0 .
Sy(f] = J'-m uy("r) e LBl dr t2-73
w :
=2wfri
Sxy(f} =J axy('r) e dr (2-8}

=0

Sx(f) and Sy(f) are defined as the power spectra of the
(£)

xy
is defined as the cross-spectrum function between these

processes.

stochastic processes [xk(t)] and [yk{t}]. s

It is convenient to define the so-called
physically realizable one-sided power spectra and cross-
spectrum functions. These functions given by

Gx{f} = ZSx{f),o = f < oo,otherwise zero (2-9)

Gy(f] 5 2 Sy(f}»O = f < mjotherwise zero  (2-10)

G (f) = 2S_(f))0 = f < crotherwise zero (2-11)
Xy Xy

are the quantities measured by direct procedures in
practice.

In the case of real valued process all the
previous equations may be simplified. The real valued
two-sided power spectrum is obtained from equation 2-6
by making the imaginary part equal to zero:



ax{r) cos 2rfr dr (2-12)

(98]
5.(1) = j
-

Due to the fact that the covariance is an even function,

s (f) =2f a (r) cos 2xfr dv (2-13)

and

@
Gx(f) = 4 J ax('r} cog 27fr dr

o]

(2-14)

for 0 < f < « , otherwise zero.

The physically realizable one-sided cross-
spectrum function can also be expressed as

" -2 mir
2 a T) e d
fo xb'() T (2-15)

G, 1) =

and being a complex number, it can be written as:

ny{f) = ny{f) -1 Qxy(f) (2-16)

where ny[f] and Qxy(f) are the co-spectrum and

quadrature spectrum, respectively. Following Bendat

and Piersol (1966) the co-spectrum can be thought of as
the average product of x(t) and y(t) within a narrow
frequency interval, between f and f + Af , divided
by the frequency interval, &f. The quadrature spectrum
is the same except that either x(t) or y(t) , not
both, is shifted in time sufficiently to produce a 90-
degree phase shift at the frequency £. 1In this manner,
ny(fj is a measure of the in-phase-covariance, and

Qxy{f] is a measure of the out-of-phase covariance.

In more practical words, the co-spectrum measures the
contribution of oscillations of different frequencies

to the total cross-covariance at the lag zero between
two time series. The quadrature spectrum measures the
contribution of the different harmonics to the total
cross-covariance between the series when all the harmon-
ics of the series x(t) are delayed by a gquarter period
but the series y(t) remains unchanged (Panofsky and
Brier, 1958).

Equation 2-16 may be inverted to give the cross
covariance function

@
axyh} - J’o [ny(f} cos 27 f1+ Qxy(f) sin Zirf-r] af
(2-17)

Because mxytr) satisfies the relation

a (=7) = e

- Jm{'r)

the co-spectrum may be expressed as:

w
- 2 dr = -f
ny(f} jo [axy[f} +a-yx(-r}] cos 27iT ny( )
(2-18)
meaning that ny(f) displays symmetry about the ordin-

ate.

L]

Similarly the quadrature spectrum may be
expressed as:

(ee]
Qxy(f) =J; [a xy{‘r} - ayx{'r)]Sin 2rfr dr = = Qxy(-f}
(2-19)
meaning that Qx (f) is an odd function. From equa-
tions 2-18 and 2-19 and from the definitions
= f) =i f
ny(f} ny( ) 1ny{ )
ny(f) = ny(f] - iQxy(f)
one obtains,
1
Cx_y(f) = = [ny(r} + ny(f)] (2-20)
1
Qxytf) - 5 [nytﬂ - ny(f)] (2-21)

An alternative way to describe ny(f) is by
the complex polar form
-i 0
i xy{ f)

[ 0=f <

ny(f} x ’ ny(f)

where
G| = Vero Rl e
and
exy(f) « Tan™? [2—:3;;-} (2-23)
which is called the phase function,
The physical meaning of ny[f} and Bxy[f)

and the role they play in a linear system will be
explained in Chapter II1I-2. By interchanging x(t) and
y(t) one finds that ny(f} = ny(f) and ny(f] =

—Qxy{f). Therefore, one can write:
e
ny(f) = ny(f} (2-24)
and
G _(f) = G (= L
yx{) xy( f) (2-25)

where G'xy(f) denotes the complex conjugate of ny(fj.

3. (Coherence Function:. The coherence function

is a real valued quantity Y?xy(rj defined as

'Gx}'{f} | . |va{ f) | !
2 G ()G T ) sfo; N0

[2-20)

yi (f)



For a better understanding of the coherence
function it is useful to make an analogy with the clas-
sical results of correlation and regression analysis.

In statistical analysis of real variables, the
correlation coefficient between two variables x and
y with mean values of zero is defined as

5. = E [xy] cov [x.y] _ “xy
xy (E [xz} E [ya} )1/2 u'x u'y u-xu-y
(2-27)
where o2 and o§ represent the variances of x and

¥y , respectively.

Similarly, if complex numbers X and Y are
being considered the square of the correlation coeffi-
cient becomes:

_E lxv] & [xv*]* -
E [xx“] E [YY"} e

2
Pxy

where the (*) symbol represents the complex conjugate
of the term in question.

Rewriting equation 2-28 one gets:

. Elxy e [x* v i e [xv*]l|® i |';XY|!

PXY " T, [xx*] E [YY’:'] of ok b ol
(2-29)

From equation 2-29 it is seen that the coherence func-
tion may be thought of as a correlation coefficient

squared if we replace o, with sxy(f) r o§ with
s (f) and cf, with Sy[f) . We will proceed to show

the meaning of these changes.

Cramer's representation of a stationary process
with zero mean gives:

s8]
x(t) —-J’ 27t dz (1) (2-30)
-

where we have written dzx(f) for zx(df) and zx[f}

is an orthogonal set function with

E |dzx(r)|2 = ds () = S(Ddf (2.3

S (£) being the power spectrum of the process {x(t)}.

Similarly we have:
E |dz (f)|? = dS_(f) = S_(f) df -32
| zy( )l ¥ Y (EnaZ)

and

E | dz(0) - dz;{f}] = ds () = S, (DA (.33

|

Comparing equations 2-31, 2-32 and 2-33 with the expres-
sions

ot = E [xx"] = E|X]* (2-34)
tr; = E [Y'Y*] = EIle (2-35)
aXY = E[XY*] (2-36)

it may be seen that the coherence function can be
interpreted as a correlation coefficient squared between
the spectral variables zx{f] and zy{f} calculated

at each frequency f .

It should now be clear that it is often
advantageous to study correlation problems in the
frequency domain rather than in the time domain. Work-
ing in the frequency domain, any stationary series can
be considered as a sum of components or frequency bands,
each component being statistically independent of the
others. One of the important things that the theory
of stationary processes tells us is that not only is
the component with center f, independent of all the

other components of the process, but it is also inde-
pendent of all components of another process except for
the component centered on fj In this manner when the

coherence between two time series is calculated one
looks for correlations among them in a very small
range of frequencies. On the other hand, with the
cross covariance function one is looking for correla-
tions between the two processes considering each one
as a whole.

4. Enr_ti.al_mhmnnn_m;_tmfs Consider two
real-valued stationary processes [x(t)] and [y(t)]

and assume that the mean values are zero in order to
simplify the notation. The residual random variable
Ay(t) of y(t) from x(t) is defined by:

ay(t) = y(t) - () (2-37)

where ?(t} is the least squares prediction of y(t)
from x(t) ,

a@

§i) = ==L x(t)

XX

(2-38)

Consider now three real-valued stationary ran-
dom processes [xltt)] z [xzttj] and [y(t)] where

the mean values are assumed to be zero. One can define
the partial correlation coefficient °1y-z by

a? 2

)z ) 6x1 by . alyAZ _—

=3

3 % ax, ax, * dysy ¥41.2%y.2
where

= = - 2 -
Tax, ox, T T1y-2 @4{1-p3) (2-403
a = o = @ (1 - s ) (2‘41)

by by yy-2 Yy P2y



_ T1%2
@22% 1y

@ s a = i

iy iy (2-42)

Similar to the partial correlation coetficient
in the time domain, it is possible to define in the fre-
quency domain a partial coherence function between
xl(t] and y(t) with xz(t] removed at every t by

least squares prediction from xl(t] and y(t) :
2 2
| Sly Zm | () l
Sy1.20 S .EI?}
(2-43)

The terms in equation 2-43 are called residual or par-
tial spectra and are defined by:

I‘ziy 2

) e

Yz
e vy 20 Qyt.2

5,0 S, (0
Syy.2(0 = S0 |t - 5, ﬁyf (2-44)
Syq.20 = %1HJ(1-nyﬂ ) (2-45)
Sn,_z{f} B Swff) (1 wzy(f) (2-46)

The proof that the partial coherence is
nothing else but an analog of the partial correlation
coefficient between the spectral variables, calculated
at each frequency f , can be carried out by following
the same procedure used for the normal coherence.

The case of multiple processes is only a gen-
eralization of the three variable case explained before.
The partial coherence function bewteen x. (t) and y(t)

with xz(t] xs(t) y == xn{t] remov%d at every
t by least squares prediction from xl(t} and y(t) ,
is defined by
,Yz (f] ‘ Sl_y.23......n(f)|z
Y52 oo o B S14.23....0%  Sgy.23. . ¥
(2-47)

The definition and calculation of the partial
spectra of formula 2-47 has been done in matrix form by
Goodman (1965) in a very suitable form for the use of
high speed digital computers. Their meaning is essen-
tially the same as those of formula 2-43.

Similarly to the development made for the par-
tial coherence function it is possible to define the
partial phase function between xl{t} and y(t) with

xz(t) x3(t), ———— xn(t} removed at every t by
lease squares prediction from xl{t) and y(t) ,
S
-1 Imag. part of "iy.23....n
045.23 g " e Real part of 3
LA B 1y.23..... n
(2-48)
5. Application of Partial Coherence Functions.
When more than two variables are being considered, the

partial coherence function, rather than the crdlnary
coherence, gives a quantitative indication of the degree
of linear dependence between the variables. An example
of erroneous high coherence is shown in Figure 2.1.

Assume that a coherence function value near
unity is computed between the variables xl(t) and

y(t) . One would be inclined to believe that there is
2 linear system relating these two variables.

x,(t)

S {7
@QQ}O 3 ;h}
& 2,
Unknown i
b J SRR e syatem | === o y(t)

Figure 2.1 Example of erroneous high coherence (Ben-

dat and Piersol, 1966).

Suppose there is a third variable xz(t) which is high-
ly coherent with xltt) and also passes through a lin-

ear system to make up y(t) . In this type of situa-
tion, the high coherence computed between xl(t) and

y(t)
highly coherent with xl(t) i

might only be due to the fact that xz(t} is
If this is in fact the
situation, the partial coherence between xl(t) and

y(t) will be very low.

On the other hand, the opposite situation can
If two uncorrelated inputs x (t) and X, (t)

pass through existing linear systems to make up the
output y(t) , the coherence functions YI (£f) and

exist.

Y%y(f] will appear less than unity since there will

which will
are compu-
subtracted

exist a contribution due to the other input
appear as noise. If the partial coherences
ted, the effects of the other input will be
out and the true coherence will be obtained.

6. Procedure of Computation. All the computa-

tions were carried out in a 6600 CDC digital computer.

The first step in computing the spectrum is
the calculation of the autocovariance function of the
series according to the formula,

- '331" Ey T 'EEL’
t=1 i -i
N=-i
Z x
t=1+1 t=1 (2-49)
for i=0,1, 2, . , m , where m is the max-

imum numbcr of lags and N the number of observations.

Next, the finite cosine series transform func-
tion of the autocovariances is calculated according to
the formula (Blackman and Tukey, 1958} ,

m
G(i) = £ &'(j) cos LLI-
x T XX m s A
J._['I [#=2
for i=90, 1, 2, ,om Where,



3\
A A
a, (0 =a (0)
A s A .
Q;‘x('l) = zaxx[l) for 1 =1 = m-1{ > (2-51)
and
A _
a;‘x(m] N axx{m) J

The spectrum is calculated according to the spectral
window formulas (Blackman and Tukey, 1958):

[

Gx(OJ = 0.5 Gx(O) + 0.5 fon \

A ~ ~
Gx(i) = 0,25 Gx[I-l) + 0.5 th]
+ 0.25 G (i+1)
X

) (2-52)

for i=1, 2,3, ..., m=1

and

A o~ A~
Gx(m} = 0.5 Gx{m-l) + 0.5 Gx(m} /

In computing the cross spectra, the first
step is the calculation of the cross-covariance func-
tions of series x and y

N-i
e (=) = . X,y
xy N=-i tit+1i

- - z ¥ Z x
N beetad Y Vst (2-53)
3 S
s S ) oy EtH

y (N ) N-i
e =< IR Y I (I /
Wel liatet Y et % (2-54)

Next, the cross-covariance transform functions are com-
puted according to the formulas (Granger and Hatanaka,
1964):

oA { o A : A ’ jinm
T - ! + '
ol 2 1fo (%5 ayxia)) T s
and
ot 3 Tk i A iw
i 2 - ' - 1
QM = 3 jz=° a9 &1 () st L —
for i = 0; 1; 2; « e, M

where

Ay _ A
axy(ﬂ) = axy((l)

a;{ym = zsx () for 1 =i =m-1 ) (257
alky(rn) = &:xy(nm) )

and similarly for é\ .
¥x
In order to obtain the real and imaginary part
of the cross spectrum, the cross-covariance transform
functions are weighted according to the spectral win-
dow formulas:

A —~ —~
= 0. 0) + 0,5C (1
cxyw} 5 cxy( ) xy( )

-~ - \
- i 0.50 i
xy(n 0.25 ny('l 1) + 0.5 ny“)
—~
+0.25 C__(i+1) &
Xy (2-58)
for £ .2 X; %5 3y o w2 o WS
fa) ~ o~
ny(rn) = 0.5 ny(m-1}+0.5 ny(m} /
and
Q_(0) = 0.5Q (0)
Xy - e Qxy 3
oo e -~
Qxy(l} = 0.25 Qxy(i 1) + 0.50 Qxy(l}
+0.25Q (i+1)
¥ Y (2-59)
fori=1,2,3 ...., m-l
Q_ (m) = 0.5Q_(
Qxym = 0, Qxym} /

A
The resulting exy(iJ and Qxy[i) are the estimated

co-spectrum and quadrature spectrum, respectively.

The gain being similar to a regression coef-
ficient, of series y on series x at each frequency

is computed by
2 (s 2 (s
V3,0 + Q2 0

A
|H(i]| . = (2-60)
Gx(l)
for: 4 =0, 1, % s o was g B
The phase is estimated by
i o | 8,
(1) = tan”? _é’_‘L_ (2-61)
xy(l)
o ok =il X, s 5 om0 o» oy O

and the coherence becomes,



2 (s 2
P = e + G
&, & (1)

(2-62)

for i=0,1,2, .. .., m

Frequently there are obtained unstable values
of the gain in the higher frequencies of the analysis
performed. These values reflect no more than the round-
ing-off error in the division of two small quantities
(Jenkins, 1963). This unrealiability carries over into
the coherence function and the phase angle and it is
common to obtain nonsense values for these function in
the higher frequencies of the analysis. Because of
this, the gain, the coherence and the phase should al-
ways be interpreted in the light of the information
given by the cross-amplitude curve defined as

Ad) = ‘\/Ej{y{i] + Q;y(i)

0, 1, 2, 5 554 % W

(2-63)

for i =

7. Confidence Limits. The distribution of the

cross—spectral estimates has been studied by Goodman
(1957) with the main assumption being the process
(xt " yt) has a bivariate normal distribution. If the

sample size is N and the cross-spectrum is estimated
over m frequency bands, the distribution of the esti-
mated coherence, %2(f), when the true coherence is
zero at a given frequency, is given by

N

Flw) = 1 - (1-u?)™! (2-64)

Equation 2-63 enables one to fix confidence
limits for the coherence. Tables which give these
limits have been presented by Granger and Hatanaka
(1964) .

Goodman's work also provides a frequency
function for the estimated phase angle, (f) . This
frequency function is extremely complicated but two
important simplifications are noted by Granger and
Hatanaka (1964):

i) When the true coherence is zero, a[f}
is rectangularly distributed over the en-
tire admissible range of values.

ii) When the téue coherence is one, the var-
(

iance of f) is zero.

Jenkins (1962) deduces gﬂf] approximately
normally distributed with mean 6(f) and variance

given by,
A i km 1
Var (6(f) )~ 5 - [_YT(I’T B ‘] (2-65)

where m and N are the same as in equation 2-63 and
k is a constant associated with the particular spec-

tral window used. The values of k are described by

Parzen (1961).

Jenkins' approgach has been used here to fix
confidence limits for (£) -



CHAPTER III

MATHEMATICAL TECHNIQUES OF SPECTRAL ANALYSIS

FOR_LINEAR SYSTEMS

1. Frequency Response Functions. A physically

realizable, constant parameter linear system is defined
by the convolution integral

il

The value of the output y(t) is given as a
weighted linear sum over the entire history of the in-
put x(t) . The weighting function h(r) associated
with the system is defined as the output or response
of the system to a unit impulse function, and is meas-
ured as a function of time, 7t , from the moment of
occurrence of the impulse input.

y(t) = h(r) x(t = 7) dr

(3-1)

The dynamic characteristics of this type of
system can be represented by the Fourier transform of

h(t)

(0] i
H(f) = j h('r}e-lzrf-r dr (3_2)
0

The frequency response function is of great
interest since it contains both amplitude magnification
and phase shift information. Since H(f) is complex
valued, it can be expressed as

Hi) = |H@)| e ~iol) (3-3)

The absolute value |H(f)| is called the sys-
tem gain factor and the angle ¢(f) is called the sys-
tem phase factor.

From equations 3-1 and 3-3 it is easily shown
that the response of the system to a sinusoidal input
of the type

x(t) = asin (27ft + ) (3-4)

can be expresses as

y(t) = a IH{[}' sin [tht 8 #* 6(1'}] (3-5)

Therefore, the gain |H(f)| measures the am-
plitude magnification at frequency £ when the input
is a sinusoid of frequency f , while ¢(f) gives the
corresponding phase shift.

2. Single Input Linear Systems. From the start,
it is good to notice that the largest part of the re-
sponses in geophysical systems are nonlinear. When the
deviations from the linear case are not too large, the
output can be written in the form

y(t) =

@
j hir) x(t = 7) dr + n(t) (3-6)
o

where n(t) is a noise term which arises because the
input and output variables may not be well controlled.
n(t) may also include quadratic and higher terms omit-
ted in the linear approximation.

If x(t) and y(t) may be regarded as sta-
tionary time series, and n{t) can be neglected, it
can be shown the following relations hold for the sys-
tem represented by equation 3-1 (Enochson, 1964),

a ) = |HO|* G0 (3-7)
ny(f) L] H(f) Gx(f) . (3-8)
From equation 3-8 we get:
|5,0]
|aw)| - =T o
X
and
Sxy(f) = ¢(f) (3-10)

Equation 3-7 contains only the gain factor and
in this manner it only gives amplitude information.
Equation 3-8 is actually a pair of equations containing
both the gain and the phase factor. By means of equa-
tion 3-8, if the input and corresponding output of a
system are known, we can estimate H(f) which will be
of great importance in predicting future responses of
the system. If the input x(t) in equation 3-6 is of
the type x(t) = a cos (2nft + ), the ouput of the
system is:

|c (0]

X,

y(t) = a . cos (2wft + € + &(f) ) + n(t)
_le'm_

(2-11)
where the spectrum of the residuals term n(t) is
given by Jenkins (1963) as

= 1 -v2 (f =
Gm(f) Gy_y(f} ( 'ny( )) (3-12)

will give an idea of possible other periodici-
y(t)

It is important to notice that the frequency

Gnn(f)

ties in the series which are not shared by x(t).



response function for a constant parameter linear sys-
tem is a function of frequency only. If the system
were nonlinear the weighting function, h(r) , would
be a function of the applied input, hXCT} , and then

the frequency response function would be a function of
both, frequency and applied input. If the parameters

of the system were not constant, the dynamic properties
would have to be described by a time-varying weighting

function, h(r , t) , which is defined as the output of
the system at any time t to a unit impulse input at
time t - t . In this case the frequency response

function would be a function of both, frequency and
time.

For a linear system, equations 3-7 and 3-8
may be substituted into the definition of coherence
(equation 2-26) giving

G2(1) |H{f)|a
P = g G GIRNE
X X

1 (3-13)

Thus, the coherence function may be thought
of as a measure of linear relationship in the sense
that it attains a theoretical mavimum of one for all
f in a single input linear system.

Goodman et al. (1961) examined a single in-
put linear system with the assumption there was noise
in the measurement of the output.

7it)
—=——— Process ylf)
x(t) y'(t)
Figure 3.1 Linear system with noise in the measure-

ment of the output (Goodman et al. 1961)

Assuming n(t) and x(t)
correlated and all three processes
n(t) stationary Gaussian noises, the effect of the
disturbance n(t) appears only in the coherence
Tiy(f) which is now in the form

statistically un-
x(t) , y(t) and

(3-14)

It is seen from equation 3-14 that the coherence de-
creases as the size of the disturbance increases.

Enochson (1964) considered a general case of
noise in both input and output measuring devices. As-
suming that a measured input x(t) and a measured out-
put y(t) are composed of true signals u(t) and
v(t) and uncorrelated noise components n(t) and
m(t) respectively as shown below,

ult) v(t)

—)

i)

System

m(t)

Figure 3.2 Linear system with noise in the measure-
ment of the input and output (Enochson,

1964) .

then the "desired" coherence function is

Ke! (0|
YZ (f) = uv
uv Guffj Gvifj (3-15)
but the measured coherence function will be
Teytfl = Gfo"} a1
2
- | Guv(f”
G0+ G0 6,10+ G, ] (5-16)

Thus, theoretically, the measured coherence
function will always be less than the desired coherence
function.

The concepts outlined above are most important
in the analysis of multiple hydrologic time series and
in the design of adequate hydrologic instrumentation
(Eagleson and Shack, 1966).

3. Multiple Input Linear Systems. Constant
parameter linear systems responding to multiple inputs
from stationary random processes will now be consider-
ed. It will be assumed that N inputs are occurring
with a single output being measured. The output may
be considered as the sum of the

T T T 1

[ |
xl(ﬂ—{—- h () =y (1)

I |
| ‘: || ’
| | | |

I . I
mem‘——-— o (0 —=win—

Figure 3.3 Multiple input linear system,



N partial-non-measured-outputs yi{t} ol T

L 2y o owoa 5N o That'is,
N
y(t) = ii'ii ¥, (t) (3-17)

where yi[t) is defined as that part of the output

which is produced by the i

inputs are zero.

input when all the other

The cross-spectral relations between the in-
puts and the output can be expressed concisely with
matrix notation. The following formulation of results
is contained in Enochson (1964) and in Bendat and
Piersol (1966).

First define a N-dimensional input vector

[x0)] =[x » 50 ... xg®] s

Let H(f) be a N-dimensional frequency re-
sponse function vector

[H(f)] = {Hltf) y ) 0 HN(f)] (3-19)

Next, define a N-dimensional cross-spectrum
vector of the output y(t) with the inputs X, (t) ,

[sxy(r)] . [s’y(f] T SNy(f)]

(3-20)

where

siu(f) ! Sxiy(ﬂ o

L, 2y

Finally, define the N x N cross-spectral matrix of
the inputs xi(tj:
i ]
S NS, ... Syn(P
Szl{f? Sy(f) o oo Sy
[sxx(f}] = . (3-22)
S8 S0« - - e Syn(

10

where

=1 ,2,...., N-23

) = ? .

Sij{} SH G
1}

The fundamental equation for multiple input,

constant parameter linear systems can be written as:

[10) [3,,0] [#" )

S_(f)

- (3-24)

where [H*'(f)] denotes the complex conjugate trans-
pose vector of [H(£)] .

The basic equation which gives the transfer
functions ijf] in the case of multiple correlated

inputs is
[S;:y{f)] - [Sxx(r}] [H‘(!}] (3-25)

Equation 3-25 may be rewritten as the system
of equations

N
s, if) = Z H,.(f) S .(f
13'( ) S 30 13{ ) (3-26)
Solving equation 3-25 for the transposed row vector
[H'(£)] we get

= R
o] - [s,0]7 [59] e
Equation 3-27 gives each Hi[f) as a function of the
input-output cross spectrum and holds whether or not
the inputs are correlated

The solution of equation 3-27 has been pre-
sented by Goodman(1965) in the form,

i (£)
Hi(f) Siy-234 ”“'Nm \
T | AP N
5 (3-28)
H:(f} SNy-tau,,,_N_,(f}
= SNN-IZB-i,__'N_I{f} /

Equation 3-28 will be used in Chapter VI, where monthly
rainfall in different parts of a watershed 1is consi-
dered as the multiple input vector which gives as total
output the monthly runoff at the outlet.



Chapter IV

. _THEORY OF CROSS-SPECTRAL ANALYSIS
OF LINEARLY DEPENDENT STOCHASTIC PROCESSES

1.

process of m

Moving Average Process.
th

The moving average

order is defined by

y(t) = @, x(t = j) (4-1)

n M3

j=0

where x(t) 1s a random process uncorrelated with
X(t-j) for all j > 0 , and the a's are weights as-
signed to each past value of x(t).

This process may be used, at least as a first
approximation, as the generating scheme for certain
hydrologic phenomena. For example, consider that run-
off for a given interval of time is a function of all
climatic factors, present and past, since the begin-
ning of time. The dominant factor is effective pre-
cipitation which is defined as total precipitation less
all losses. Because the effect of effective precipi-
tation in the present runoff decreases with an increase
in antecedency, each value of effective precipitation
must be given a weight whose value decreases with an
increase in antecedency. If the present runoff is
essentially independent of the effective precipitation

beyond the mth antecedent interval of time, then
runoff may be represented as being generated by a mov-
ing average of extent m of effective precipitation
(Matalas, 1966).

From equations 3-7 and 3-8 we can write the

spectrum of the process y(t) as
m . a
-2
G() =| T ae™®"M G, (f) (4-2)
Yy & t x
t=o0
and the cross-spectral density function ny(f] as:
m
fs -2mif
ny(f) = tz-o @ e G_(f) (4-3)

where the form of Gy(f) has been studied by Siddiqui

(1962). Making
m
-2
Z a.e R 10 (4-)
t=o0
the spectral matrix of the process y(t) can be writ-

ten as:

i

G _(f) G_ (f)
( Xy
[G{f)] - =
G _(f) G_(f)
( W{
1 H(f)
G_ (f)
x> (4-5)
He(f) |HD|?
where the use has been made of equation 2-24.
From equation 4-5 one gets,
H(f) - H*
Y;y(f} . BlO-BYY (4-6)
EGIE
The coherence function is one for all f es-
sentially because the process y(t) is a determinis-
tic linear function of the process x(t) . Equation

4-6 provides a simple means of testing the validity to
assume a moving average process.

2. Autoregressive Processes. In a wide variety
of geophysical problems, multidimensional types of

autoregressive schemes are of common application. The
nth dimensional autoregressive process of mth order
is defined by
(3 @) AIr 7.7
xt{t} VL PP a, x!{t-]) zlm
(3 @ (3
xzh) m | 238 an | [ *(t=9) z,(t)
= E: 5 3 : : } ;
j=1 (j) " (j) (j) x s
xn“] b “nn xn“-j} ?ﬂ“}
(4-7)



where [z.(t)] is a random component uncorrelated with
[xj (t-k)] and [zj (t-k)] for all k >0 .
cal cases, the random component, [zj{t}] , may be in-

In practi-

terpreted as the residuals which represent the action
of events, other than [xj(t-k)] , affecting [xj[t}].

Examples of this type of process occur fre-
quently in hydrology. In the case of representing run-
off as a moving average process of effective precipi-
tation, m may happen to be very large. It would be
a mistake to try to reduce the order of the moving
average because it is convenient to consider the ef-
fective precipitation for all antecedent intervals of
time, however small their contribution may be to the
present runoff. In this case, the generating scheme
for the runoff can be represented by an autoregressive
process which involves far fewer coefficients than the
moving average process (Matalas, 1966).

River flows can be represented in many in-
stances by autoregressive processes (Yevjevich 1964,
Roesner 1965, Quimpo 1966).

In the analysis of the cross-spectral char-
acteristics of autoregressive processes, the mathema-
tical complications increase very rapidly with the
order of the process. Fortunately, most of the auto-
regressive processes used in hydrology are the first
or second order Markov linear processes. The analysis
and results obtained for the cross-spectral character-
istics of Markov linear processes is believed to be
new by the author.

First order Markov linear process. Let us as-
sume that a certain process, such as annual runoff,
can be represented by a first order model,

[a.ij][xj(t-l)] ¥ [zj(t)]

where the terms are the matrices of equation 4-7 when

(4-8)

[xjm] ®

m=1 . Two realizations of this process can be ex-
pressed by
- t
x, (t) . x,(t=1) z,(t)
- + (4-9)
xzh) a8, xzh-l} zzh}

which results from making m =1, n =2 in equation

4-7.
Equation 4-9 is equivalent to the system:
xl{’t} = a“xi(t-t) + aizxz{t-l) -+ zl(t) (4-10)
xz{t} = aZle(t-i) + azzxz(t-l) + zz(t} (4-11)

Quenouille (1957) shows the coefficient matrix
of a first order autoregressive scheme to be equal to:

12

[&u] B [aijm] . [atrij(ﬂ)]'i (4-12)

where [uij(l}] is the covariance matrix for the lag

one,
@ (1) ey, (1)
[ 0] = (4-13)
ay () a,,(1)
and similarly
@,,(0) a,(0)
[ar ij{OJ] = (4-14)
a21(0) azz(o]

the inverse of [x(0)] denoted by [u[U)]'l.

From equation 4-12 it is directly obtained:

a (1) a,,(0 - a (1) a, (0

1T T 0a 0 -a, (0,0
P“U} - Piz{” P12(0)
(4-15)
1« 921(0)
where
@ ,(s)
Pya(8) = pyyl-s) = (4-16)

[“ T “zz(o)] s

The terms u11(0) and uzz(ﬂ} represent the variances
of xltt] and xz{t} , Tespectively:

a 1’(0) = r: (4-17)
@ ,,(0) U'; (4-18)
Similarly we can obtain:
. '"21(”“12(0)+"22“)“11(O)
22 a ,(0)a,,0)-a,,(0)a, ,(0)
P,a(1) = py5(0) py (1)
(4-19)

1 - 2
Pi,00)



-a“(l) a ,(0)+a 1‘,_(1] a,,(0)

1 o (0)e,,(0)-a, (0)a,,0)

i2

0 (pizm—p“mplzm)J

o {t- "fz“’})

(4-20)

@, (1) a,,(0) -a,.(1)a 51(0)
(0) @,,(0) ~a, (0) a 12(0)

%24

@y

v, {921(1) - py,(1) 912(0))

g li "’fzfo)l

(4-21)

Assuming zltt) uncorrelated with xI{t—s) and mul-
tiplying equation 4-10 by xl(t-s) , one gets after

taking expected values:

2 2
= + - e
oy Pyqyls) = ay o ey (s=1) + a0 0.0, (s-1) (4-22)
Assuming now that one has two first order
Markov linear processes, or in other words that the

coefficients a, and a, are identically equal to

zero, further simplifications are possible. Substitut-
ing in equation 4-22 the well known result (Kendall,
1966) :

|sl

Piyls) = oy (1) (4-23)
one gets:
5 Pl = 2 |s-1l 3
7y Pyg (1) = agep ey (1) + 2,000, pyyls-1)
(4-24)

Using for a1 and a;, the values given by equations

4-15 and 4-20 and performing some simplifications,
equation 4-24 may be reduced to:

-1
From equation 4-25 it becomes:
p,(s) = pIS](l)p (0) (4-26)
21 11 12 -

and

13

|sl

Taking the Fourier transform of a21(s) we get the

cross-spectrum between the series Xy (t) and x2(t):

a
= Isl Tifs
* Piy

-0

(0 =
s

)

or

2wifs

s
pii(l}piz(O)alwze +

«2mifs
=Py p(0eye, =

(4-29)

Equation 4-29 gives the cross-spectrum between two
first order Markov linear processes.

Siddiqui (1962) shows that the spectrum of a
first order Markov linear process is equal to:

2 2
oy |4~egld)

(f) =
=30
pfl(i) +1 - 2p11{1) cos 27f (#-39)

which can be written as,

oy (1 3 9:1“}]

S¢4(0) = [ (1) 2™ [ 1) o271 (4-31)
t-py () e™™) [1-p (1) ™™
Similarly,
2 2
- 1
S (1) 7 1 - 30
22 JZTI'"if .-Z‘ﬂ'if {_1'31]

€

1=p,,(1) ) (’ = ppolt) ¢



Using equations 4-29, 4-31 and 4-32 and making some
simplifications, the coherence between the two proces-
ses is found to be equal to:

|312(f)|z

-
511 55,0

Yfztﬂ

(- p,,(0)p,,(0]* 02,00
(1 - pfiﬂ)] ll - pszii),

(4-33)

Equation 4-33 shows the coherence function
between two first order autoregressive processes equal
to a constant independent of frequency*. This result
should provide a valuable tool in the analysis of this
type of processes.

Second order Markov linear process. The method
that will be presented now can be used to study the
spectral matrix of any autoregressive process regard-
less of its order or dimension.

Quimpo and Yevjevich (1967) have shown that

g order autoregressive schemes may be used to fit

the patterns in the sequence of daily river flows af-
ter the periodic component has been removed from the
series.

The equation for a two-dimensional 2 order
autoregressive process is obtained by making n = 2
and m = 2 in equation 4-7:

Xi(t) a8, [xl(t-i]'
3
bilbtz xift-ZJ . zl(t)'
(4-34)
bZib?.Z xz(t-Z} zz(t)J
which is equivalent to the system:
xi(t) = a“xift-i) + aizxa(t-l} - b“xi{t-Z) + (4-35)
bizxz{t-z) + zl(t}
(1) = a, x, (1) + ) x,(t-1) + by x,(t=2) +  (4.36)

by ,X,(t=2) + 2,(1)

In order to obtain the coefficient matrix

[aij] as was done for the 1St order Markov process,

it will be necessary to transform the 2nd order process
to a 1St order process. This, in turn, can be accom-
plished by doing

* This result was first pointed out to the author by
Dr. M. M. Siddiqui of Colorado State University

14

xi(t-i) = x3{t)

xZ(t-i) = x4(t)

(4-37)

(4-38)

Equations 4-34, 4-37, and 4-38 can be written

and

as:
]
X,(t)
X,4(t)
x4t)
b o
0o o
0 o
0o 0

I—au‘ﬁ"lz 0 ol
Ryshys @ 19
{ 0 0 0
0o 1 0 0

bllhIZ‘ “1“’1;
byibaa| [Xoft-1)
0 0 | |x(t-1)
0 0 | |x,t-1)

which can be expressed:

[xf‘ﬂ

— —_

xl(t-l)
xz(t-l]

x3(t-l]

x4{t-l}

o
z (t)
zzft)

0

[aij] [xj{t'l)] *

by [”j“")] + [2,0]

or

[xj(t}]
where

[“ij] =

[uij] [xj(t-i}] ¥ [zj(t}]

a8y 83 by
8,1 32 Pyy
{ o0 o0
o 1 o0

(4-39)

(4-40)

(4-41)

(4-42)

and [x,(t)] now represents a four-dimensional i

order process for which we can obtain [uij] 2



2] - [“'ij(”] ; [aij(o}]-i (4-43)

[uij (1)] and [ﬂij (0)] represent now four by four
covariance matrices.

Using straightforward relations like:

(1) = Cov [xi{t} xs{t-i)]

“§3 .
Cov [xittj xi(t—2]] = a“{z)
we can express [aij (1)] by:
“"n(” a () e, (2) “12(2)_
@ (tha,,(1)a, (2) a,,(2)
[“ ij“) e (4-44)
0“(0) a,,(0a, (1) 012{1}
@10 a,,(0)a, (1) a,,(1)
and similarly,
@, (0a (0)a, (1)e, (1)
a.  (0)e. (0)a, (1)ea, (1)
[“ijto)] _ 21 22 21 22 (4-45)

@ (a,(1)e,, (0)a,,(0

a () a,,(1)a,,(0)e,,(0)

After the calculation of [uij]’ we may return

to the original model of equation 4-34 which can be

written:
2 2
[l -a“D-b“D —aizD-blzD ] l:xi(t)]
2 2
-a_, D=~ bz D 1 - aZZD-bZ;’.D xz(t)

21 1
1 0 zl{t}
(4-46)
0o 1 z.(t)

2

or in shorter notation:

[py®] - [x®] = [ay] [%®] (4-47)
where the operator D is defined by:
D" x(t) = x(t-n) (4-48)
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The spectral matrix of the process is now ob-
tained using a formula given by Whittle (1954):

[sij(f}] = [vij(z}] : [‘ri*j,(z)] (4-49)
where
5 W ezm
and
[vij{D)] : [pij(D)]-i [qij] (4-50)

with [\rij '(z)] standing for the complex conjugate
transpose matrix of [\fij{z)] -

Equation 4-49 is valid provided the series
xl[t} and xzft) have unit variance.

In the case studied here [qij] is the unit
matrix, therefore

[vij(D)] = [py {D}]'1 (4-51)

and

2 2
1-aZZD-bZZD aiZD+b12D

[pij(m ]' . m.

2 i 2
a,,D+b, D t{-a, D-b D

(4-52)

The spectral matrix of the process can be written:

F“{z) Flz(z}
1
[s,0] - —— .
ij 2
|det [pij(Z)]l
Foz)  Fpla)
(4-51)
where
= 2 2 2 =
F“(z} i aj, + hz.: ta,, ¥, {.1“ hz.' [
alzbiz -aul (z ] z)-b“ (z bz (4 ha)



2
22 21 g1 Py 3y by -y
va, b )(z+a ) -b,, (272427 (4-55)
11 211 11
% _ = = 2 P
FiZ(z}-F’Ei(z)-{i a,,2 bzzz )
(B B B, T R B, )
21 21 12 12 4
b 8 #8010 (4-56)
11 11

The coherence function of the process can then be ex-
pressed as:

2
o E0]
B T o
Fiif Fzzf

(4-57)

After going through some algebra, y?(f) can be
written:
2 0 cos 2nf + 2 ¢ cos 4df +
2 2v cos 6 7f + 28 cos 87f + p
AR e e v e e
[ ‘ 22 11
26 cos 2mi - Zb“eos41rf]
(4-58)
where
- 2 2 2 2
@ = LR, vl TS, TR,
B =a,,bta,b,-8,
i Lia 2 2 . o2
A R T
€ U Byp Boy ¥ By By = Wy
€ =By =B, by *anby
N 8 mllay By P Ry - Badn
m R byy By m Ryt = Dyobyy t 858y
. 2 2 2 2 2
p e+n+b21+b12+1
a =€b21+£n+bizl+ An
wo= el+b21r,| =+ blzn
y = Eb12 + b21 A
€ = by by,
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3. Mathematical Development of the Cross—
Spectral Characteristics of Filtered Series. The
smoothing of time series by moving average schemes and
other types of filters is a practice sometimes applied
in hydrology and other geophysical sciences. So it is
of great practical importance to understand clearly
the different effects that filters can have in the
cross—spectral characteristics of time series. In
this chapter, we will study the behavior of the cross-
spectral density function, the coherence function and
the phase function when one or both of the series in
which the analysis will be performed have been pre-
filtered.

Let us have two random input functions Xy (t)

and xzft) related to two output functions ylft]

and yz(t) through a linear filter function h(t) by
means of a simple convolution,
[e's)
yi(t} - J x!(t ~ u) hi{u) du (4-59)
-0
w
yz(t) = J xz(t-— s) hz{s) ds (4-60)

=00

The cross-covariance function between the filtered out-
put functions is:

lim { T
% T Tom 2T

t t+7)dt 4
y,5, v, (8) ¥, (4-61)

T

which can be written:

o (7] ™ ']:_]:im —2}:[',- J : dt"’m xi(t-u}hl(u}du-
Y4¥, E ~T -
a [88) [ea)
[ xgtrrr-sinyfales [ nwan [ nfe)ds
-0 -0 =0
1 { jT (00
1m r
sy x, (t=u) x, (t+r=s)dt = J h,(u) du =
T 2T J 't 2 —

hzfs] ds . @ (v +u-s)

J'm
- 172
% (4-62)

In order to go from the time domain to the
frequency domain , we take Fourier transforms at both
sides of equation 4-62,

*® [ 8] "
.L.J o ".I'} -'iw-r:_L e_-lde.
2 dies Y472 2T )
O a
[ msran " mmras oy rew
-0 -0
(4-63)

where w represents the angular frequency (radians
per unit of time).



The left hand side of equation 4-63"is the
cross-spectrum between y.(t) and y,(t) G (w)
1 2 Y1¥2

Doing & =71 + u - s in equation 4-63 we get:
(2 o TR o3}
X i - tga

G {UJ=")}'J’ o L EE ”’dnJ’ h,(u) dus

Y, T duen -

*© i iwu
[ m@ase, e [ 0@ et .

=00 172 =0

a o
J' o wye gy
T X, X
-0 172

Therefore,
( = iwu
G w)= G W) . .
v, ) "ixzm J:m h (u)e™ du
-iws 4o

(4-64)

Equation 4-64 gives the relation between the
corss-spectrum of the filtered series as a function of
the cross-spectrum of the original series and of the
linear operators hl(u) and h2[s)

The transfer function of a filter h(t) is
defined as the Laplace transform of h(t)
o “iot . ; -ié(w)
Rlw) = J- hit) e di = ‘ Riu}l e
“CD
@ @
= J k{t) cos wt di - iJ’ hit) sin wt dt
- -0
= Re {R(u)} + i Im {R(u)} (4-65)
where
1
[R{u)] = [(Re {R(u)} )? + (Im {Rfu)} )]
(4-66)
and
-1
$(@) = tan” [Im {R(ma} /Re {R(w)} ] S

The angle ¢ (w)
which the filtering function h(t)
frequency w

represents the phase shift
produces at the

For smoothing and filtering functions having
(n + m + 1) discrete weights, the transfer function is
computed by the following form of equation 4-65:
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m
=
k==n

h

Kk sin wk

(4-68)

hk cos wk -1

In the spectral analysis of a time series, the
effect of applying a filter to the series is to multi-
ply the power spectrum by |R(w) |2 , (Siddiqui, 1962).
When analyzing a single time series, the phase shifts
will have no effect on the spectral analysis since the
spectrum suppresses all phase information. This is
not the case in cross-spectral analysis where the phase
diagram is a very useful one. So, it is highly de-
sirable that smoothing and filtering functions do not
shift the phase of waves of any frequency. The shift
angle can be made equal to zero by requiring that the
imaginary part of R(w) be zero. This, in turn, can
be accomplished by requiring the filter function h(t)
to be even, for if h(t) is even, the terms contain-
ing the sines in equations 4-65 and 4-68 are zero, and
R(w) is a pure real quantity computed by

(e8]
Rlw) = ZI h(t) cos wt dt

(4-69)
o
for continuous h(t) functions, or by
n n
R{w) = = hkcosuk=h +2 = hkcosuk
k=-n k=1 (4-70)
for smoothing and filtering functions having (2n + 1)

discrete weights.

Using the definition of R(w) , equation 4-65,
we can write equation 4-64 as

G (w) G
Y1¥2 3

From equation 4-71 it is seen that the cross-
spectrum of the filtered series will be different of
the cross-spectrum of the original series.

It is of fundamental interest to know if lin-
ear filters like those of equations 4-59 and 4-60 will
change the coherence between the series. It is known
(Siddiqui, 1962) that the individual spectra of the
filtered series are equal to

(w)
{

(w)

&
¥y |Rh1(w}\ Gy (4-72)

and

CEyZ(u}

"

R, @[t 6 @ .

4-73
2 2 ( .

In this manner the coherence y; y (w) can be written
1+
as:



Yytyz

=|Rh!(“)l* & T TRy ]

2

2 erlxzﬂw)ia.

R¥ (w)

R (w)
1 h P

2

2 ze(w}

(w)|®
_ X, X, )
Gx WG W  Yxox

1 %5

(4-74)

Equation 4-74 shows that the coherence func-

tion of the filtered series is the same as the coher-
ence function between the original series.
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The main conclusions of this chapter with re-

gard to the use of linear filters before any cross-
spectral analysis is performed may be summarized as

follows:

The phase function of the filtered series

is different from the phase function of the
original series except if both filters are
even, in which case, the phase function will
remain unchanged.

The cross-spectrum of the filtered series is
different from the cross-spectrum of the
original series, their relation being given
by equation 4-71.

The coherence function will remain unchanged
after the use of any kind of linear filter.



CHAPTER V

DATA ASSEMBLY AND PROCEDURE FOR THE ANALYSIS OF
HYDROLOGIC SERIES BY CROSS-SPECTRAL TECHNIQUES

1. Data Selection. One of the aspects this

tions in the same or different environment.

dissertation was directly concerned with was to study
the frequency correlations between hydrologic time
series and the characteristics of the gain and phase
functions between them. To attempt this, several sta-
tions were chosen and complete cross-spectral analyses

Precipitation data consisted of annual and

monthly series. Only monthly runoff data were ana-
lyzed. Figure 5.1 shows the location of the stations
used in the analysis. A detailed description of these

stations is done in the appendix.

were performed between them and groups of other sta-
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In the analysis of annual precipitation,
there were 27 stations with an average length of data
of 62 years per station. There were 41 stations with
monthly precipitation data averaging 57 years per sta-
tion. The rainfall stations were divided into five
regions in each of which one base station was fixed.
Complete cross-spectral analyses were then made be-
tween the base stations and all the stations in the
region. The characteristics of the base stations are
as follows:

Region No. 1 Pacific Coast (California,
Oregon, Washington) with 14 stations
and the base station: San Diego Lat:
32.733 Long: 117.167 Period of rec-
ords: 1850-1960.

Region No. 2 Valley Environment (California,
Oregon) with 8 stations and the base
station: Sonora Lat: 37.983 Long:
120.383 Period of records: 1888-1960.

Region No. 3 Mountain Environment (Colorado,
Wyoming, Idaho, Montana) with 6 stations

and the base station: Durango Lat:
37.280 Long: 107.880 Period of rec-
ords: 1895-1960.

Region No. 4 Gulf of Mexico (Texas, Louisi-
ana) with 7 stations and the base sta-
tion: New Orleans Lat: 29.95 Long:
90.07 Period of records: 1870-1960,
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Region No. 5 Plain Regions (Texas, Oklahoma,
Kansas) with 6 stations and the base
station: Lampasas Lat: 31.05 Long:
98.18 Period of records: 1895-1960.

There were 37 runoff stations, all of them
located west of the 117° meridian. The average length
of series among these stations was 36 years. The base
station characteristics are:

Middle Fork American River near Auburn, Cali-

fornia.  Lat: 38.92 Long: 121.00 Period
of records: 1912-1960.
2. Meth is. All the data used were
previously standardized by the transformation:
= x(t) ~ x
U = (5-1)

where x(t) is the series of values of each station,

X is the mean of x(t) , and s(x) 1is the standard
deviation of the series. Because of the previous
standardization, the spectral ordinates are all in
[cycles per unit of time]-

With the annual data there were used 15 lags
with a resolution of 0.067 cycles per year. In the
monthly analysis there were 24 lags with a resolution
of 0.042 cycles per month.



CHAPTER VI

APPL ON OF CROSS-SPECTRAL TECHNIQUES
TO HYDROLOGIC TIME SERIES

1. Analysis of Monthly Precipitation Data. Month-
1y hydrologic data can be regarded as consisting of
two parts: periodic and stochastic (Roesner and Yev-
jevich, 1966)

x(t) = m(t) + z(t)

- (6-1)
where
R 2 it . 2wt

m(%) % # ? (aj cos - + hj sin 55 62

- -1 -

x = N zZ x(t) (6-3)

L

and the summation over j can vary from j =1 (com-
mon case for rainfall stations), or j =1, 2 (fre-
quently found in runoff series) to j =1, 2, 3, 4, 5

in some extreme cases. z(t) represents the 'noise"
or random component which for monthly precipitation
series follows a random independent model and for the
monthly runoff series follows a first order autore-
gressive process (Roesner, 1966).

In the monthly precipitation data of regions
1 and 2, the variance explained by the annual oscil-
lation appears to depend upon the climatic and thermal
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Fig. 6.1 Coherence functions for monthly data or tem-
perature (series No. 1), atmospheric pressure
(series No. 2) and precipitation (series No.
3) at Eureka (California) with their corres-

ponding 95% significance levels.
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conditions of the station, being large where the an-
nual temperature range is small and less pronounced
where the latter is large. Peak changes in the spec-
trum can be considerable even over short distances:
at Lakeview, Oregon, where the mean annual temperature
range is about 40 F, the peak in the spectrum at the
annual cycle of precipitation is 3.098; at Auburn,
California, 490 Km. away from Lakeview, where the
mean annual temperature range is about 33°F, the peak
in the spectrum is 6.007; in Tatoosh Island, Washing-
ton, where the temperature range is only 13.7 F, the
peak is 7.073,

In order to investigate more fully the fre-
quency correlations between temperature, atmospheric
pressure and precipitation, the cross-spectra and
partial cross-spectra of these three series were
calculated for five of the stations located in region
1. Figures 6.1 through 6.10 show the coherence and
partial coherence functions obtained in this analysis.
It appears from these figures that, for the stations
considered, there exists a real relation between the
annual cycle in temperature and the annual cycle in
precipitation, but only an apparent correlation exists
between the annual cycles in pressure and precipita-
tion. Notice that the high coherence between the

annual cycles of pressure and precipitation is in all
cases non-significantly different from zero when the
effect of temperature is subtracted from the analysis.
On the other hand, the partial coherence between the
annual cycles of temperature and pressure is high in
all but one case.
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Fig. 6.2 Partial coherence functions for monthly data
of temperature (series No. 1), atmospheric
pressure (series No. 2) and precipitation
(series No. 3) at Eurcka (California) with
their corresponding 95% significance levels,
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Fig. 6.3 Coherence functions for monthly data of tem-
perature (series No. 1), atmospheric pres-
sure (series No. 2) and precipitation (series
No. 3) at San Francisco (California) with

their corresponding 95% significance levels.
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Fig. 6.5 Coherence functions for monthly data of tem-
perature (series No. 1), atmospheric pres-
sure (series No. 2) and precipitation (series
No. 3} at San Diego (California) with their
corresponding 95% significance levels.
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Fig. 6.6 Partial coherence functions for monthly data
of temperature (series No, 1}, atmospheric
pressure (series No. 2) and precipitation
(series No. 3) at San Diego (California)
with their corresponding 95% significance
levels.
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Fig. 6.7 Coherence functions for monthly data of tem-
perature (series No. 1), atmospheric pres-
sure (series No. 2) and precipitation (series
No. 3) at Portland (Oregon) with their cor-
responding 95% significance levels.
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Fig. 6.8 Partial coherence functions for monthly data
of temperature (series No. 1), atmospheric
pressure (series No. 2) and precipitation
(series No. 3) at Portland (Oregon) with

their corresponding 95% significance levels.

23

ory?
o8
06

04 L5 _
ozLJ \/~.\
0 il B —— M

e
Py
ory?
1§3
oa[ ¢
asf b
0af B
azd
0 ! ] + N
cpy
1.0y Yz
& 283
08| ¢}
oz}
1 1 1 L i L 1 1 |
0 068 10 15 20 25 30 35 @0 45 50 o
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Except for Tatoosh Island, the coherence between the
annual cycles of temperature and precipitation remains
significantly different from zero when the effect of
pressure is subtracted from the analysis. This indi-
cates that for these stations, the annual cycle in
pressure is related to the annual cycle in precipita-
tion only through the annual cycle in temperature.

8 (radians)

Figures 6.11, 6.12 and 6.13 show some typi-
cal phase diagrams obtained in the analysis of the
series of temperature, atmospheric pressure and precip-
itation for the stations previously mentioned. When
the phase is about 180 degrees in all the frequency
range, it indicates that when a given frequency com-
ponent of one series increases, the corresponding 8 tradians)
frequency component of the other series decreases and
therefore the relationship between the variables is
an inverse one. Both the phase and partial phase be-
tween temperature and atmospheric pressure seems to
oscillate about 180" . This is also the case for pre-
cipitation and atmospheric pressure which should be
expected from physical reasons when precipitation is
caused by low pressure centers. The phase and partial
phase between the series of temperature and precipita-
tion exhibit much larger variations than for the pre- -4
vious series.
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Tables 6.1 and 6.2 present the cross-spectral Fig. 6.12 a) Phase diagram for monthly data of tem-
characteristics at the annual frequency for some of perature and precipitation at Eureka
the stations considered in regions 1 and 2. Up to (California).

distances of 1000 Km in region 1, the gain is very §) Sartial phase diagram for the seme series

of a) when atmospheric pressure is sub-
tracted from the analysis.
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TABLE 6.1 CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS OF DISTANCE
FOR MONTHLY PRECIPITATION SERIES (REGION NO. 1)

Base station: San Diego WB APT,

Station Years Distance from Coherence 95% Gain Phase a5%
Name 1.D. Lat,. Long. of base station vZ (1 cpy) significance |H(L cpy)] @ (1 epy) conficence
records used (Km. ) level for vy {radians) bands for &
Ojai 4,640 34,450 119, 250 56 280 4 0.908 0, 320 1,000 -0, 081 +0. 034
San Luis Obispo 4. 785 35, 300 120,667 91 445 1 0.904 0,220 0.907 -0, 003 +0. 017
Big Sur St. Park 4,079 36, 250 121,783 46 581 4 0.898 0, 355 0, 847 -0.017 +0. 034
Antioch F. Mills 4,023 38.017 121,767 81 756 4 0.867 0. 241 0.884 0. 056 +0, 026
Fort Ross 4,319 38,517 123, 250 BS 861 ¢ 0.805 0. 230 0.820 0.074 +0. 063
Fort Bragg 4,316 39, 950 123,800 61 1120 # 0.859 0. 300 D.782 0.105 40, 069
Cottage Grove 35.190 43,783 123, 067 44 1480 ¢ 0,800 0. 365 0. 755 0. 235 +0. 071
Longview 45, 477 46, 167 122,917 36 1624 ¢ 0.747 0. 401 0,770 0.:337 +0, 089
Tatoosh Island 45,833 48, 383 124,733 17 1897 ¢ 0,764 0, 248 0,718 0, 446 10,103
¥ northward) {(southward)

SZ

TABLE 6.2  CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS OF DISTANCE
FOR MONTHLY PRECIPITATION SERIES (REGION NO. 2)

Base station: Sonora

Station Years Distance from Coherence 95% Gain Phase 95%
Name 1.D. Lat. Long. of base station v2(1 cpy) significance |H(1 CPY){ f(1 cpy) confidence
records used (Km.) level for y? (radians ) bands for 8
Auburn 4,038 38, 900 121, 067 B1 133 ¢ 0,975 0. 300 0,959 0,041 +0. 000
Chester 4.170 40, 300 121,217 50 287 ¢ 0.949 0. 341 0.952 0. 0928 +0. 008
Wasco 4,945 35, 600 119,333 61 287 + 0.890 0. 300 1. 016 -0,114 +0, 010
AMcCloud 4,545 41, 267 122,133 50 444 4 0,524 0. 341 0. 950 0,114 +0, 008
Lakeview 35,467 42,183 120, 350 48 490 4 0,728 0, 345 1,112 -0, 056 +0. 103
Lytle Creek 4,522 34, 200 117, 450 55 518 | 0.830 0. 360 1,082 0. 000 +0, 017
Estacada 35,269 45, 267 122,317 52 854 ¢ 0.868 0,331 0.B99 0, 268 +0, 005

}{nor+hward) {{southward)




close to one and the phase practically zero if consi-
dered with its confidence bands. This indicates that
in this range of distances the annual precipitation
cycle can be considered the same for stations located
in the U. S. Pacific Coast. In region 2, although the
gain remains close to one, phase differences among the
stations seem to be larger than in region 1. In both
regions the coherence at the annual frequency is very
high and always significantly different from zero.

In region 1 the amplitude of the annual os-
cillation decreases when advancing in the northward
direction and at Tatoosh Island, 1900 Km away from the
station base, the gain is 0.718 and the phase 0.446
radians. In region 2 the same trend is observed in
all the stations with the exception of Lakeview.

The slow and progressive variations of the
gain and phase make it easier to predict models like
equation 3-5 for one station on the basis of another
one. Due to the high percentage of variance explained
in some regions by the annual cycle and its subhar-
monics (Roesner and Yevjevich, 1966), this type of
regression by frequencies will be very useful in the
prediction and simulation of hydrologic time series.
One example of this will be given later in this
chapter.

Figures 6.14, 6.15, 6.17, and 6.19 show some
typical coherence and cross-correlation functions ob-
tained for regions 1 and 2. For these regions, the
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Fig. 6.14 Examples of coherence functions for month-
ly data of region 1 with their correspond-
ing 95% significance levels. Base station
#4.774.
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coherence in the monthly analysis is very high re-
gardless of frequency up to distances of 250 Km. This
indicates that one series could be completely predict-
ed on the basis of the other one because all the re-
spective frequency components are very well correlated.
For longer distances the coherence remains very high
only at the annual frequency indicating that with the
exception of the annual oscillation, the other fre-
quency components can be considered as uncorrelated
noise. The average coherence and cross-correlation
functions for regions 1 and 2 are shown in Figures
6.16, 6.18 and 6.20 with their respective variances.
These average functions were obtained by calculating
the average value of the function over all stations

in the region at each frequency (for the coherence
function) or at each lag (for the cross-correlation
function).

For the simulation and statistical predic-
tion of hydrologic events at future points in time,
covariance analysis might sometimes be more appro-
priate than spectral analysis since the time domain
is the natural domain in which to operate. As an
example, Figure 6.17b) shows the cross-correlation
function between monthly precipitation at Tatoosh
Island and monthly precipitation at San Diego. A

difference in phase of about 2 months is apparent. On
the other hand, the phase diagram between those sta-
tions gives a value of 0.446 radians at 1 cpy, equiv-
alent to
12 months x OTT}E = 0.852 months = 26 days
2
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Fig. 6.15 Examples of coherence functions for month-
ly data of region 2 with their correspond-
ing 95% significance levels. Base station
#4.835.
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Fig. 6.17 Examples of cross-correlation functions

for monthly data of region 1 with their
corresponding 95% significance levels.
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Fig. 6.20 a) Average cross-correlation function for
monthly data of region 2
b) Variance of a).

The result from the phase diagram will give
much more accurately the difference in phase between
the annual cycles in both stations due to the fact
that when working in the time domain we consider each
process as a whole without any consideration of fre-
quency components, On the other hand, there are many
cases in which the engineer prefers to consider each
process as a whole and to try the prediction in time
of the general relations of rainfall at both stations.
Then covariance analysis seems the most appropriate
one. The series of rainfall at Tatoosh Island and
San Diego are shown in Figure 6.21. The peak in pre-
cipitation at San Diego occurs two months later than
the peak at Tatoosh Island, as result which is in
agreement with the value obtained from the cross-
correlation function.

Some examples of the gain and phase functions obtained
for regions 1 and 2 are shown in Figures 6.22, 6.23,
and 6.24.

In general, for the precipitation stations
located in regions 3, 4 and 5, no significant peaks
were detected in the spectra. For these stations the
coherence was low over the frequency range and only
when the stations were very close was the coherence
significantly different from zero although without
peaks. Figures 6.25 and 6.26 show typical ccherence
and cross-correlation functions for regions 3, 4 and 5.
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Island (Washington)
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2. Analysis of Monthly Runoff Data. Some ex-
amples of coherence and cross-correlation functions
found in monthly runoff data are shown in Figures 6.27
and 6.28. The average values of these functions and
their respective variances are shown in Figures 6.29
and 6.30, Table 6.3 presents the cross-spectral
characteristics at the annual frequency for some of
the stations considered in the analysis. Contrary to
the case of monthly precipitation, there is no defi-
nite trend in the amplitude of the annual runoff cy-
cle, a fact that is reflected in the lack of a trend
in the gain function. The explanation of this lies in
the influence of watershed characteristics on the
properties of the runoff time series and also in the
influence of the evaporation and storage which vary
from region to region.

The coherence at the annual cycle always
has a highly significant meaning, and there is a strong
correlation between the annual oscillation of these
stations. In many cases, the semi-annual cycles were
also found to be strongly correlated. For distances
up to 370 Km the coherence was significantly differ-
ent from zero over the frequency range, meaning that
one of the series could be completely related to the
other one because of the interdependence of all the
correspondent frequency components.

Some of the phase and gain diagrams obtained
in the study are shown in Figures 6.31 and 6.32. From
the phase diagrams it is observed that stations south
of the base station have runoff series that lag be-
hind the base series. On the other hand, stations lo-
cated north of the base station have series whose fre-
quency components precede those of the base station,
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Fig. 6.27 Examples of coherence function for monthly
runoff series with their corresponding 95%
significance levels. Base station #112.402
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Fig. 6.28 Examples of cross-correlation functions
for monthly runoff series with their cor-

responding 95% significance levels. Base
station #112.402
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1€

Basge station: Middle Fork American River at Auburn (Calif,)

TABLE 6.3

CROSS-SPECTRAL CHARACTERISTICS AS FUNCTIONS

OF DISTANCE FOR MONTHLY RUNOFF SERIES

Station Years Distance from Coherence 959, Gain Phase 959,
Name 1.D. Lat. Long. of base station v3(1 cpy) significance IH{! cpy) | 8(1 cpy) confidence
records used (Km.) level for y? (radians) bands for @
Thomes Creek 112, 308 39.88 122.55 40 161 4 0.887 0. 381 0,994 0.593 +0.035
Falls Creek 112,137 37.97 119,77 45 203 0. 9542 0, 360 0, 989 -0.684 +0,. 017
Salmon River 111,383 41 .38 123,47 37 350 ¢ 0,914 0, 397 0, 945 D.296 +0. 035
Kern River 112, 001 35.93 118.48 48 427 4 0. 906 0, 345 0. 986 -0,.772 +0, 035
McKenzie River 14.278 44 13 122.47 36 616 § 0.827 0. 400 0.959 0.676 +0. 105
Toutle River 14. 4189 46. 33 122.73 31 861 0. 744 0. 436 0,891 0.967 +0. 157
Murrieta Creek 111. 059 33.48 117.15 36 910 ¢ 0.562 0, 400 . 383 0.695 +0.208
Hoh River 12, 050 47,80 124,10 34 1057 § 0. 624 0, 415 1. 021 1.404 +0, 192
t (northward) i(southward)
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Fig. 6.32 Examples of gain functions for monthly run-
off series. Base station #112.402

3. Joint Analysis of Monthly Rainfall and Mo -

ly Runoff in a Watershed. Two cases were considered

here:

a) Single input system: when all the pre-
cipitation was considered coming from one
station.

b} Multiple input system: when precipita-

tion at different stations was considered
as different inputs.

Single input system. 35 years of monthly
precipitation data at Auburn with the corresponding
discharges of the Middle Fork American River at Auburn
were used. The analysis was performed with a maximum
of 36 lags. Figure 6.33a) shows the coherence func-
tion between both series. It indicates a strong cor-
relation between the annual cycles and an almost null
correlation between the semi-annual cycles. For fre-
quencies larger than 1 cpy, the coherence function is
not significantly different from zero and its shape
indicates that in a monthly basis the rainfall-runoff
process is far from being linear.

The phase diagram is shown in Figure 6.33b),
it seems to oscillate around a value of 0.652 radians,
or in other words, the precipitation series appears
to be, as z whole, 1.24 months ahead of the runoff
series. The sign test rejects at the 95% probability
level, the hypothesis that the phase function is oscil-
lating around zero.

Figure 6.34 shows the spectra of both series
together with the spectrum of the residual terms as
defined in Chapter III. From the spectra of the
residuals it is seen that the annual cycle of one
series could be completely explained by means of a
cyclical regression with the other series. This kind
of regression was carried out with the help of the
phase diagram and the gain function, the later one
shown in Figure 6.35. A straightforward harmonic
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Fig. 6.33 a) Coherence function between monthly pre-
cipitation at Auburn and monthly runoff
of the Middle Fork American River at Au-
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Fig. 6.34 Comparison of spectra obtained in the joint

analysis of monthly precipitation at Auburn
and monthly runoff of the Middle Fork
American River at Auburn.
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Fig. 6.35 Gain function of monthly runoff of the
Middle Fork American River at Auburn
based on monthly precipitation at Auburn.

analysis gave for the annual cycle of the Middle Fork
American River the expression:

y(t) = 0.947 cos (6-4)

2m
W 1.~k 0.354]

Similarly, for the precipitation at Auburn, it was
ocbtained:

x(t) = 0.969 cos (6-5)

2
T t - 0_820]

The gain and phase at 1 cpy were 0.951 and
1.145 radians, respectively. Using equation 3-5 the
predicted annual cycle of the Middle Fork becomes:

2T
y*(t) = 0,969 x 0,951 CDS(TZ_ t-0,.820 +1,145

(6-6)
am
= 0.922 cos SV t + 0.325) (6=7)

Figure 6.36 shows a comparison of equations
6-4 and 6-7. This type of regression holds theoreti-
cally between any corresponding frequency components
but it is most useful for those components which ex-
plain large percentage of the variance of the series.

Multiple ipputs system. The partial cyclical
regressions intended here were not successful, never-
theless valuable experience was obtained.

Three watersheds were studied here in which
precipitation at different places of the watershed
were considered as different inputs producing as sole
output the runoff at the outlet.

The practical difficulty in obtaining reason-
able results arise from the form of the equation for
the partial transfer function (equation 3-23).

- g3, .. W

(6-8
. Siy.23, .. .80 }
where the partial cross spectrum 511_23....N[f} has

for the case of two inputs the form (equation 2-53):

(1]

S (f)

11.2 8440 ["Yfz(f)}

(6-9)

For the multiple inputs case 511_23__..N(f]

has expressions similar to equation 6-9 and it is ob-
served that we need inputs not very well correlated,
y%ztfj < 1 , in order to obtain meaningful results

for Hy(f) This has proved to be a most difficult

yit!

1) Actual annual cycle of Middle Fork Amer-
ican River at Auburn. (Eq. 6-4)

2) Annual cycle of Middle Fork predicted in
basis of precipitation at Auburn.
(Eq. 6-7)
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case for monthly rainfall data coming from stations in
the same watershed although it is probable the theory
could be applied successfully in other geophysical
problems. The fact that vy2(f) 1is close to one for
monthly rainfall data coming from stations in the

same watershed shows that one station is representa-
tive of the monthly rainfall regime in the watershed
and therefore it is unnecessary to analyze the system
as one with multiple inputs.

4. Analysis of Annual Precipitation Data. The
analysis of annual precipitation data did not show any

significant peak in the spectra. The coherence dia-
grams vary drastically from station to station in all
the regions studied and a common peak or feature in
them does not appear to exist.

Some examples of the coherence and cross-
correlation functions found are shown in Figures
6.37 and 6.38 with the corresponding 95% significance
levels.

From the spectra it is concluded these se-
ries can be considered as '"white noise'" or random in-
dependent data. When two stations were at short dis-
tance one from the other, it was common to find noise
correlation at one or several frequencies (Figure
6.37a). When the distance between the stations in-
creases the coherence function is not significantly
different from zero in all the frequency range (Fig-
ures 6.37b and 6.37c). For nearby stations located
in the same environment, it is common to find signi-
ficant zero-lag correlation (Figure 6.38a) meaning
there is a strong relation in the rainfall at the
same year in both stations. This significant zero-
lag correlation completely disappears when the dis-
tance between the stations increases.

¥
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Fig. 6.37 Examples of coherence functions for annual
data of region 1 with their corresponding
95% significance levels. Base station
#4.774,
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5. The Application of Cross-Spectral Analysis
in the Study of Hydrologic Stochastic Processes.

First order Markov linear process. Cross-
spectral methods are used here to test the assumption
of a first order Markov linear generating process in
two runoff time series. Use has been made of the
theory developed in Chapter IV.

As an example, a complete analysis was per-
formed for annual standardized discharge data of the
Wolf River at New London (Wisconsin) and annual stand-
ardized discharge data of the Fox River at Berlin
(Wisconsin). The data used was from 1898 to 1957 and
the analysis was done wtih 12 lags. The reason for
using annual data in this example is that Yevjevich
(1964) has shown that 13t order autoregressive schemes
may in many instances fit sufficiently well the
patterns in the sequence of annual river flows.

Figures 6.39 and 6.40 present the estimated
power spectra and also the theoretical ones obtained
from equations 4-31 and 4-32. The estimated coherence
function and the constant value obtained from equation
4-33 are shown in Figure 6.41. Considering that all
the data is obtained from a limited sample, the fit
can be considered a good one.

Second order Markov linear process., Use has
been made of the theory developed in Chapter IV.

As an example we have used two of the rivers
analyzed by Quimpo (1967): Boise River near Twin
Springs (Idaho) and St. Maries River near Lotus
(Idaho).



G(f)

25¢

& Estimated ——Theoretical "

1 | | ! |
area 6724 8724 10/24 i2/24 cpy

Power spectrum of the Wolf River's annual
standardized flows.

G(f)

2.5

AEsti —T

1 1 1 o,
o 2/24 4/24 6/24 8/24 10/24 12/24 cpy
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Fig. 6.41 Coherence function between the annual flows
of the Wolf and the Fox Rivers.

Figure 6.42 (after Quimpo, 1967) shows the
spectral density of the original series of daily river
flows of Boise River and the spectral density of the
residuals obtained after removal of the annual cycle
and its first three sub-harmonics. In the analysis
performed in this example the period of record used
was from 1950 to 1960 and the residuals were previous-
ly standardized. There were 600 lags throughout the
analysis.

The covariance matrices were in this case:

0.132]

(0,901 0.154 0.760
0.169 0,109  0.148  0.074
[a..{i)] =
H 1.000 0.174 0.901 0.154
0.174  1.000  0.169 0.1ogj
and
[1.000 0.174 0.901  0.154
0.174  1.000  0.169  0.109
[@, @] =
J 0.901 0.169 1.000 0.174
0.154  0.109  0.174 1,000




The matrix of coefficients became equal to:

1.166 -0.006 =-0.286  0.006 |

0.183  0.086 =-0.034 0,040
[“ij] - . 8 5 5
0 1 0 0

In this manner, the following two equations were ob-
tained for the standardized stochastic components of
the above rivers:

xlft} = 1.166x1(t-l} - 0,0Dze(t-l}

-0, 286x1(t-2] + 0, ODSxZ(t-Z) 4 zl(t}
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Fig. 6.42 Boise River spectral densities: (1) daily
flows, (2) stochastic components of daily
flows (after Quimpo, 1967).
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xZ[t) = 0.183xi(t-1) + 0.086x2(t-1)

-0, 034x1(t-2) +0, 040x2(t-2) + zzft}

where the subscript 1 refers to the Boise River and
the subscript 2 refers to the St. Maries River.

Equation 6-58 gave for the coherence function
the expression:

-0.016 cos 27f - 0.008 cos 4rf+0,004 cos 67f
+0.0004 cos 8nf + 0,036

vi(f)=
[1.010 - 0,166 cos 27f - 0,080 cos 41rf] [2.478

- 3.010 cos 27T + 0,572 cos 471]

Figure 6.43 shows a comparison of the obtain-
ed and theoretical coherence.
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Fig. 6.43 Coherence function between stochastic com-
cnents of daily flows of the Boise and
t. Maries Rivers.



CHAPTER VII

CONCLUSIONS

The investigations performed here gave rise
to the folldwing conclusions:

1) 1In a specific application it seems there
there are two main considerations which should enter
into the choice between cross-correlation analysis
and cross spectrum:

a) the use to be made of the estimated
quantities,

b) ease of physical interpretation.

If the ultimate objective of the analysis
is the construction of models like equation 3-5 then
cross-spectrum certainly provides the answer to the
problem. Covariance analysis could be used for fre-
quency response studies, but the calculations would
be considerably more difficult. Also as indicated in
Section 3-1 cross-spectrum has a direct physical in-
terpretation in this case.

Since prediction is done in time, it is
natural to work in the time domain. For the simpler
linear prediction models, since the parameters are
estimated by functions of the auto- and cross- cor-
relation, it is natural to work with these quantities.

2) A highly significant coherence between
the annual cycles of hydrologic time series has been
observed, making it possible to predict the annual
oscillation in one station on the basis of the annual
oscillation at another station.

3) For stations located in the Pacific
Coast of the United States, the amplitude of the an-
nual cycle in precipitation appears to decrease when
advancing in the northerly direction, Up to distances
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of 1000 Km the annual cycle can be considered practi-
cally the same for all stations in the region. On
the other hand, no similar trend was observed in the
runoff stations.

4) No significant coherences were observed
in the annual series of precipitation and runoff ex-
cept in very close stations for which the coherence
was high in all the frequency range.

5) The coherence function may be used as
a measure of linearity of the rainfall-runoff process.
In the monthly basis this process appears to be highly
nonlinear.

6) By partial cross-spectral analysis it
was found that in the Pacific Coast of the United
States the annual cycle in temperature is highly cor-
related with the annual cycle in precipitation, but
the annual cycle in atmospheric pressure seems to be
related to the cycle in precipitation only throughout
the cycle in temperature.

7) Coherence analysis stands as a powerful
tool to analyze and test generating processes commonly
used in hydrology. Special mention should be given
to the coherence function between two 15t order
autoregressive processes which was proven to be equal
to a constant independent of frequency.

8) The use of prefiltering or smoothing be-
fore the series have been analyzed was shown to change
the cross-spectrum between the series but the coher-
ence remains the same if the linear filters are used.
The phase function will be altered unless even filters
are used.
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APPENDIX 1

PRECIPITATION STATIONS USED FOR THE INVESTIGATIONS

O Station used with monthly and annual data
*  Station used with monthly data only
*#  Station used with annual data only

Years Type
Station Ident, Name of Station Lat. Tong. of Record of Data
REGION NO. 1
4, 023 Antioch F. Mills 38,017 121,767 81
4,079 Big Sur State Park  35.250 121, 783 46 O
4,291 Eureka 40,800 124, 167 45 *
4,316 Fort Bragg 39.950 123,800 61 (@]
4,319 Fort Ross 38,517 123,250 85 O
4, 640 Ojai 34,450 119. 250 56 (0]
4,774 San Diego WB Apt 32,733 117,187 111 0]
4,777 San Francisco WB
Apt 37.800 123,017 45 *
4, 785 San Luis Obispo Poly 35,300 119,250 91 O
35. 190 Cottage Grove 43,783 123. 067 44 o
35,675 Portland WB 45,517 122, 667 45 *
45, 477 Longview 46, 167 122,917 36 0]
45, 833 Tatoosh Island WB 48,383 124, 733 77 0
REGION NO, 2
4, 038 Auburn 38,900 121, 067 61 o}
4,170 Chester 40, 300 121,217 50 (@]
4,522 Lytle Creek PH 34,200 117,450 55 O
4, 545 McCloud 41,267 122,133 50 O
4,835 Sonora 37.983 120, 383 73 (o]

40



APPENDIX 1

PRECIPITATION STATIONS USED FOR THE INVESTIGA TIONS-Continued

O  Station used with monthly and annual data
%  Station used with monthly data only
*% Station used with annual data only

Years Type
Station Ident, Name of Station Lat, Long, of Record of Data
REGION NO. 2
(Continued)

4, 945 Wasco 35.600 119,333 61 @]
35, 269 Estucada 2 SE 45,267 122,317 52 (o]
35. 467 Lakeview 42,183 120,350 48 @]
45,704 Rimrock Teton Dam 46.650 121, 133 51 0

REGION NO. 3

5,243 Durango 37.283 107.883 67

5.762 Shoshone 39, 567 107, 233 51 O
10, 271 Dubois Exp. Station 44,250 112,200 39 *
10, 628 Driggs 43,733 111, 117 51 *x
10. 808 Salmon 45,183 113, 883 50 e}
10. 814 Sand Point Exp. 48,283 116,567 50 (@]

Station
24,279 Saint Ignatius 47,317 114,100 52 *x
48,091 Border 3N 42,250 111, 033 59 *x
48, 407 Green River 41,533 109,483 51 (@]
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APPENDIX 1

PRECIPITATION STATIONS USED FOR THE INVESTIGATIONS-Continued

O Station used with monthly and annual data

*  Station used with monthly data only

#%  Station used with annual data only

Years Type
Station Ident. Name of Station Lat, Long. of Record of Data
REGION NO, 4
16, 470 Tennings 30, 23 92, 87 63 *
16. 666 New Orleans 29,95 90, 07 91 *
41, 061 Beaumont 30, 08 94, 10 68 *
41,318 Flatonia 29, 68 97,10 53 *
41, 343 Galveston WB City 28.30 94, 83 89 *
41, 351 George West 28, 35 98, 12 45 *
41, 597 Mission 26,22 98,32 40 *
REGION NO, 5
14, 643 Plains 37,27 100. 58 51 *
14, 664 Quinter 38. 07 100, 23 30 "
41,408 Henderson 32,15 94, 80 52 *
41,502 Lampasas 31,05 98, 18 66 *
41,721 Post 33,20 101, 37 44 *
41,933 Vega 35. 25 102,43 30 *
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APPENDIX 2

MONTHLY RUNOFF STATIONS USED FOR THE INVESTIGATIONS

No. Years
Station Ident. Station Name Lat. Long. Area of Record

14, 049 Strawberry Creek AB Slide Creek Nr,

Prairie City,Oreg. 44, 33 118, 65 7.20 30
14, 059 Middle Fork John Day River at Ritter,

Oreg. 44,88 119,13 515. 00 31
14, 064 John Day River at Service Creek,Oreg. 44, 80 120, 00 509, 00 31
14, 141 L.ake Creek Nr. Sisters,Oreg, 44, 43 121.73 22. 20 45
14, 241 Little Sandy River Nr, Bull Run Oreg. 45. 42 122,17 22,30 41
14,278 McKenzie River Nr, Vida, Oreg, 44, 13 122, 47 930, 00 36
14, 359 Clackmas River at Big Bottom, Oreg. 45, 02 121, 92 136, 00 40
14, 382 East ForkLewis River Nr. Weisson,

Wash. 45, 83 122, 47 125. 00 31
14, 390 Cowletz River at Packwood, Wash, 46, 62 121.68 287.00 31
14,419 Toutle River Nr, Silver Lake, Wash, 46, 33 122,173 474, 00 31
14, 438 Wilson River Nr. Tillanook, Oreg, 45,48 123,72 159, 00 30
12, 001 Naselle River Nr. Naselle, Wash. 486, 37 123,75 55. 30 31
12, 006 North River Nr, Raymond, Wash. 46. 82 123, 85 219, 00 33
12, 040 Satsop River Nr, Satsop, Wash. 47, 00 123, 50 290, 00 31
12, 047 Quinault River at Quinault Lake , Wash, 47, 47 123. 90 264. 00 49
12, 050 Hoh River Nr. Spruce,Wash, 47, 80 124, 10 208, 00 34
12,127 Carbon River Nr. Fairfax, Wash, 47, 03 122, 03 78,80 31
12, 261 North Fork Stillaguamish Rv. Nr.

Arlington,Wash. 48. 27 122, 05 269, 00 32
12,6617 North Fork Ahtanum Creek Nr.

Tampico, Wash, 46,57 120,92 68. 90 30
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APPENDIX 2

MONTHLY RUNOFF STATIONS USED FOR THE INVESTIGATIONS-Continued

No. Years
Station Ident, Station Name Lat. Long, Area of Record

112, 001 Kern River Nr, Kernville,Calif. 35.93 118, 48 865, 00 48
112, 032 North Fork Kaweah River at Kaweah,

Calif, 36, 48 118,02 128. 00 49
112, 066 Mono Creek Nr. Vermilion Valley,

Calif, 37.37 118,98 92, 00 39
112,112 Chowchilla Rv, at Buchanan Dam

Site,Calif, 37, 22 119, 98 238, 00 30
112, 120 Merced River at Happy Isles Bridge

Nr. Yosemite,Calif, 37,73 119,55 181, 00 45
112, 137 Falls Creek Nr. Hetchy Hetchy,Calif, 37,97 149,.7% 45, 20 45
112, 259 Hat Creek Nr, Hat Creek,Calif. 40, 68 121,42 122, 00 30
112, 304 Mill Creek Nr, Los Molinos,Calif, 40, 05 122, 02 134, 00 32
112, 308 Thomes Creek at Paskenta,Calif, 39, 88 122, 55 188, 00 40
112, 402 Middle Fork American River Nr,

Auburn,Calif, 38.82 121, 00 616, 00 49
111, 059 Murrieta Creek at Temecula,Calif, 33.48 117,415 220, 00 36
111, 066 Arroyo Trabuco Nr, San Juan Capistrano,

Calif, 33,53 117, 67 36, 50 30
111, 083 Cajon Creek Nr. Keenbrook,Calif, 34, 27 117, 47 40,90 40
111, 153 Santa Anita Creek Nr, Sierra Madre,

Calif, 34, 20 118, 02 10, 50 44
111,393 Salmon River at Somesbar,Calif, 41, 38 123, 47 746, 00 37
111,411 Smith River Nr. Crescent City,Calif, 41.78 124, 05 613. 00 30
10. 275 Big Rock Creek Nr. Valyermo,Calif, 34,42 117, 83 23, 00 37
10, 278 Convict Creek Nr. Mammoth Lakes,

Calif. 37.62 118, 85 18, 70 35
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APPENDIX 3

LIST OF SYMBOLS

Definition
Cross-amplitude function

True, smoothed estimate, and raw estimate of the
co-spectrum

Mathematical operator
Frequency

True, smoothed estimate, and raw estimate of the
physically realizable one-sided power spectrum

True, smoothed estimate, and raw estimate of the
physically realizable one-sided cross-spectrum

True, and estimated spectral density
Frequency response function

True, and estimated, gain function
Unit impulse response function

True, smoothed estimate, and raw estimate of the
quadrature spectrum

Transfer function

Two-sided power spectrum

Two-sided cross-spectrum

Residual or partial spectrum
Standard deviation of the series x(t)
Complex random variable

Complex conjugate of X

Sample function of a stationary process
Stationary random process

Predicted y(t)

Residual random variable

True, and estimated, autocovariance function of
a staticnary process

True, and estimated, cross-covariance function be-
tween two stationary processes

True, and estimated, coherence function
True, and estimated, partial coherence function
True, and estimated, phase function

True, and estimated, partial phase function
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APPENDIX 3

LIST OF SYMBOLS - Continued

Symbol Definition

!-'-x(t)- X True, and estimated, mean value of a stationary

process

ny{ﬂ Autocorrelation function

P!z_ 2 Partial correlation coefficient

lrx Variance of the series x(t)

¢(f) System phase factor

w

Angular frequency
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Abstract: The main objective of this paper is to study the potentials of cross-spectrum
and multiple cross-spectrum for the analysis of hydrological data.

Groups of precipitation and runoff stations were selected in different climatic en-
vironment and complete cross-spectral analyses were performed between those stations.
The coherence and partial coherence functions were used for the study of frequency corre-
lations between the series and they show that there exists a very strong correlation be-
tween the annual cycles of the stations. Along the Pacific Coast of the United States
the annual cycle in precipitation appears to be basically the same wp to distances of
1000 Km.

Cyclic regression analysis with the use of the gain and phase functions is shown to
work correctly in hydrologic time series, This type of regression may be very useful in
regions where frequency components account for a large percentage of the variance of the
Series.

Cross-spectral characteristics of the moving average and autoregressive processes
are shown to be a powerful tool in testing and analyzing these types of generating pro-
cesses in hydrology. Special significance has the coherence between two 15T order auto-
regressive processes which is shown to be equal to a constant independent of freq Vi

The effects of smoothing or pre-filtering in the cross-spectral properties of two
series are studied and recommendations made when working with this practice which is
frequently used in hydrology.
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