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ABSTRACT 

Analytical and numerical studies were made of single point 

moorings of a large disc buoy in deep water. Waves of different 

frequencies and winds of different magnitudes were imposed on moorings 

of different scopes for nylon ropes. The numerical model results 

compared favorably with analytical solutions for a straight vibrating 

string and the buoy motion was validated with the results from a 

hydraulic model study. Approximate calculations, based on the straight 

vibrating string solution, were compared to the numerical results of 

curved mooring lines of various scopes. The analytical prediction of 

line tension was from fair to poor but the prediction of the position 

of the nodes of tension and the natural frequencies of the modes was 

good. A new method of presenting mooring line tension data in dimen­

sionless form is presented that reduces moorings of different frequen­

cies and line diameters to a common scale. The versatility of the 

numerical program was illustrated with two runs for moorings in shallow 

water with large waves in addition to a computation of line tension, 

position and velocity for the condition of a wind shift of 180 degrees 

on the buoy_ The usefulness of the numerical program as a design 

tool was established. 
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INTRODUCTION 

Background Information 

This report will present the current status of research into the 

numerical analysis of the motion of the mooring line and buoy of a 

single point mooring in the deep ocean for an oceanographic buoy. The 

work originally started in the summer of 1967 for the Convair Division 

of General Dynamics and was continued in the summer of 1968. During 

the academic year 1968-1969 the work was continued by the author on a 

part time basis at Oregon State University under the auspies of the 

Office of Naval Research. Such a part time arrangement was continued 

during the past academic year, also for the Office of Naval Research. 

The objective of this study has been to develop a flexible numerical 

program that can be used for design work and for engineering research 

on the mooring of an oceanographic buoy in deep water with a single 

line. It was desired that the program be able to handle situations 

with relatively large scopes as well as taut moorings. The effects 

from waves, or problems on transients, such as the anchor last 

deployment procedure, can be studied. An alternative, or supplemental, 

approach would have been to consider a solution based on small 

perturbations about the equilibrium position of the line. However, 

such a procedure considers only sinusoidal input functions and the 

program that was developed was much more flexible in being able to 

compute results for a wide variety of problems which included certain 

non-linear effects. For design purposes it would be useful to have 

both types of solutions. 
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The numerical program can be considered to exist in two parts -

one that determines the static or equilibrium position and tension in 

the line due to the action of wind, current and gravity and the second 

part that determines the dynamic tension and motion of the line due to 

waves or other forcing functions. The first part generates. the initial 

conditions for the second part. All loads and system responses are 

considered to be acting in one plane. 

The static part of the work has been described in Refs. 10 and 

11 and the dynamic portion of the program has been described in Refs. 

11 and 12. 

The work has been successful to the point of developing and 

debugging a program which predicts the position, velocity and tension 

in all parts of the line and the buoy motion. The forcing function 

can be a wave of any form, providing the water particle velocities 

and accelerations are known as functions of water surface elevation. 

In addition, other transient problems can be studied, such as an 

anchor last deployment in still water, or a transient horizontal 

motion of the buoy due to a directional change in the wind. In many 

cases the internal or structural damping in the line has been con­

sidered as well as the hydrodynamic damping. 

The differential equations of motion of the line have been 

derived in Ref. 12. The method of characteristics was used to set 

up the computational scheme for the numerical solution. Schram and 

Reyle (15) stated it well that the method of characteristics does not 

limit one to the consideration of small perturbations about .. the 

equilibrium. It was also shown in Ref. 12 how transfer functions can 

be developed and a general agreement was illustrated between a 
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computed transfer function and one developed from experimental work 

on a mooring in 13,000 feet of water near Bermuda. 

Scope of This Study 

This study continues to consider the co-planar or two-dimensional 

problem only. The buoy considered was the large discus buoy (forty 

feet in diameter) developed by General Dynamics for the Office of 

Naval Research. The mooring line characteristics are typical for 

man-made fibers, being non-linear in the stress-strain relationship. 

An approximation to line damping was included. Some time was required 

for additional debugging of the program from the 1969 results. It is 

felt that the program is highly developed now and can accomodate most, 

if not all, configurations of interest. 

Favorable comparisons were made between the closed mathematical 

solutions for a relatively straight, vibrating string and the 

numerical model. Both longitudinal and transverse vibrations were 

considered. 

Some recent laboratory experimentation with models by General 

Dynamics has resulted in data that enabled the author to validate the 

portion of the numerical model that predicts the prototype buoy 

motion due to different excitations. In addition, recent wind tunnel 

studies at Colorado State University have enabled a more accurate 

assessment of the wind drag forces on the buoy. 

Of some interest of late has been the question of how the 

mooring line tension, and particularly that at the anchor, changes 

when a sudden 180 degree wind shift occurs at the buoy, holding all 

other variables constant. This problem was successfully studied and 
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it was determined that no unusual forces were exerted at the anchor 

that were not also distributed down the mooring line. 

The primary interest in this research was to obtain some deter­

mination as to the influence on dynamic line tension due to line 

scope and the magnitude of the wind as well as the frequency of the 

waves. In addition, some minor runs were made at shallow depths to 

see how the mooring line behaved when a fairly large wave was 

subjected to the system. 

It is felt that much more needs to be done in order to gain a 

complete view of the entire range of problems associated with the 

type of moorings that were studied. However, due to a real limitation 

in time and other resources it was necessary to leave the very 

interesting additional work to future studies. 

Review of Recent Literature 

Reference 12 presents a complete derivation of the equations of 

motion of the mooring line and buoy_ The numerical solution of the 

equations indicated that the relationship between wave height and 

mooring line tension was somewhat linear for a wave period of 7.15 

seconds. Hence, transfer functions, which relate the wave spectrum 

to the tension spectrum at a position on the line were developed for 

a simulated mooring representing real prototype conditions near 

Bermuda in 13,000 feet of water. General agreement was obtained 

between numerical predictions and field measured values of the trans­

fer function. In addition, frequency response curves for the large 

disc buoy in the heave and pitch modes of motion were generated and 

it was estimated that the buoy was a nearly perfect surface follower 

for all wave frequencies up to 0.28 cps, where the response dropped 
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off sharply. Waves of higher frequencies provided very little 

stimulation to the buoy motion. 

It is interesting to note that Devereux, et.al., (2) reported that 

line tension at the buoy was quite linearly related to wave height for 

waves of mixed frequencies for measurements taken at a prototype moor­

ing in the Gulf Stream where the water depth was about 1040 feet and 

the length of nylon line plus chain was 1830 feet. The measurements 

were taken during Hurricane Betsy when the wave heights were as large 

as 30 to 50 feet and the predominant wave period was ten seconds. 

The problem of predicting the static position of a buoy and 

mooring due to steady current has received considerable interest. 

Nath and Felix (10) presented basic equations and developed a numeri­

cal solution based on equal increments of tangency angle. Berteaux 

(1) also presents the basic equations and typical current profiles to 

be used off the East Coast of the United States and he presents some 

comparative results of calculations which study the influence of line 

diameter and scope on mooring design. Martin (7) describes a numerical 

program based on equal line segments and gives information on experi­

mental drag forces on some buoy shapes. The report is mainly concerned 

with mooring lines that have steel rope for the upper portion to 

resist fish bite and nylon rope for the lower portion. 

Treatments of the problem of solving for the dynamic tensions in 

different types of moorings have been developing in recent years. 

Nath (12) describes the foundations for the present study. Fofonoff 

and Garrett (4) developed approximate theoretical computations based 

on drag forces acting on the upper portion only of taut moorings. 

They were also concerned with the transient forces due to the anchor 
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last launching technique. Millard (9) presents static tension 

variations and particularly dynamic tension variations wherein the 

dynamic tension variations were very roughly proportional to the wind 

speed. He attributed that behavior to the increased sea state for 

higher winds but this report will show that it is also reasonable to 

attribute at least a large portion of the increased dynamic tension 

to the increased mean line tension. 

Goeller and Laura (6) present equations of motion for closed 

solutions in complex form for straight compound lines where the central 

interest is in salvage, or raising loads from the ocean floor. They 

included concepts of internal damping in the line, comparing the 

results of a simple distributed mass having the usual two parameter 

model of damping with a lumped mass three parameter model. Experiment 

and theory showed that the simple treatment yielded good results in 

the region of resonance; where the effects of damping are most 

important. 

Schram and Reyle (15) used the method of characteristics 

transformation to the partial differential equations for a flexible 

line to develop a three-dimensional numerical solution for the 

dynamic response of cable towed systems at sea. They considered the 

cable to be inextensible and they did not consider hydrodynamic added 

mass. Since the modulus of elasticity of the material was not 

considered, the slope of all characteristic curves were equal to the 

velocity of a displacement wave on the line. Nath (12) showed that 

the slope of two of the four characteristic curves were equal to the 

celerity of a longitudinal elastic wave in the line. The cable 
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towed systems illustrated that the transverse motion was damped to a 

much greater degree than the longitudinal motion. 

The anchor last deployment procedure for buoy moorings was 

investigated by Froidevaux and Scholten (5). The analysis for 

numerical solution utilized a lumped mass representation of the line. 

The analysis was done for a short system and the results were extrap­

olated for a larger one. When the elasticity of the line was intro­

duced into the solution a prohibitive amount of computer time was 

encountered. 

A major unknown in the analysis of buoy mooring systems has been 

the hydrodynamic drag and added mass characteristics of the buoys. 

Mercier (8) describes an experimental model study on various buoy 

shapes in a wave basin and Felix (3) describes a model study for the 

large disc buoy. 
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THEORETICAL CONSIDERATIONS 

This section will present a summary of the final developments of 

the scheme for the numerical modeling for a single point mooring of 

the large ONR disc buoy_ The assumed line is a typical nylon plaited 

rope with a non-linear stress-strain diagram and simple two parameter 

damping, which is inversely proportional to the frequency, will be 

used. 

Governing Equations for Line Motion 

The derivations for the governing equations for the line motion 

are given in Ref. (12). The method of characteristics was utilized 

to transform the partial differential equations to total differential 

equations. The four dependent variables involved are the velocity of 

the line taken in the axial direction, which is tangent to the 

curvature of the line, v , the velocity of the line taken in the a 

radial direction, which is perpendicular to the line tangent, v , 
r 

the angle the line tangent makes with the horizontal, e and the 

line tension, T The two independent variables are the distance, 

s , measured along the line from the coordinate axes as shown in 

Fig. 1, and the time, t The solution proceeds numerically on an 

imaginary s-t grid composed of equal time increments, 6t , and 

distance increments, 6s , (except at the upper boundary condition, 

which is described later). Illustrations and a description of the 

procedures are given in Ref. 12. 

The finite difference form of the total differential equations 

can be expressed with the following matrix equation. 
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On the 
characteristic 

curve 
I 

ds = I 
1 dt I , 

(~J~ ! 1 0 -v (1) 1 (2) 
fl I 

r C(l) va 
a lJ. I , , 

(1) 1 (2) 
, 

( AIl)~ I 1 0 -v + 
C(l) vr f2 1 - - f r I l lJ. , a lJ. 

f 
, 

(1) , , 
0 1 ( (1) _ C (1» 0 e(2) = fS 

, (~ ) ~i va r , 
I , 1 I 

0 1 (va (1) + c (1» 0 T(2) 
f4 ' - (~ r! r , , 

Wherein the f terms represent the forcing functions on the 

line. The superscript 2 stands for the values at t+At and the 

superscript 1 stands for the values at time t That is, the 

coefficient matrix contains the values of v , etc., at time t 

In Eq. 1, 

(2) 

and 

where A is the cross-sectional area of the line, E is the modulus 

of elasticity, or the slope of the tangent to the stress-strain 

diagram of the line, lJ. is the saturated mass density of the line in 

slugs per foot and M is the virtual mass of the line per foot (the 



10 

actual mass plus the hydrodynamic added mass). For completeness, the 

forcing functions will be listed below. 

I T CaQ a2£ 
f = - 6t g (1 - -) sine + v - v e - - - - 6t - (4) 

1 Gar CalJ E at2 

1 T CaQ a2 £ 
f2 • - 6t g (1 - G) sine + v - v e + - + - 6t - (5) 

a r CalJ E at2 

( G - 1) g cose 1 + v + (v - C ) e 
G + CI J r a r (6) 

(7) 

In the above equations, g is the acceleration of gravity, G is 

the specific gravity of the saturated line, Q is the damping 

coefficient which will be described later, £ is the strain in the 

line, CD is the drag coefficient perpendicular to the line, D is 

the line diameter, CI is the added mass coefficient (which is equal 

to 1.0 for a smooth circular cylinder), V is the relative velocity 

between the line and the water in the radial direction and A and z 

A are the accelerations of the water particles in the z and x 
x 

directions. The values of the variables in Eqs. 4 through 7 are 

determined at time t by an interpolation procedure from the s-t 

grid intersection points as described in Ref. 12. The second 

derivative of the line strain was determined simply with the finite 
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difference approximation, 

£3 - 2£2 + £1 =------ (8) 
(At)2 

where the subscripts represent the preceding values of strain. 

Governing Equations for Buoy Motion 

The motion of the buoy was simply treated in terms of rigid body 

motion. All the forces acting on the buoy were considered in the 

x2 and z2 directions which are shown in Fig. 1. The acceleration 

of the buoy was determined at each time station with Newton's second 

law of motion and the displacement and velocity for the next time 

station was determined by means of recurrence formulae. The forces 

on the buoy were those due to pressure, or buoyancy, wind and current 

drag, added mass, line tension and gravity. The forces were summed 

in the x2 and z2 directions and moments were summed about the 

center of gravity. To approximate the true distribution of forces on 

the buoy the buoy was divided into a number of pie-shaped pieces. 

It was assumed that drag and added mass forces were concentrated 

near the lower chine of the buoy. By taking summation of forces in 

the x2 direction equal to the mass of the buoy times the acceler~ 

ation of the center of gravity in the x2 direction and by subsequent 

re-arrangment the following equation can be derived. 

(9) 

And in the z2 direction, 
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13z2 - 1;+ = - Wt cos. + Wz2 - Tz2 + IPz2 + l! z2 

+ CIAPIyAz2 (10) 

Likewise, by taking summation of moments about the center of gravity 

equal to the moment of inertia about the center of gravity times the 

angular accelation, 

Ksx2 - 14%2 + 16~ = Wx2 Z2 + Fx2 Zl + Tx2 Z3 + Ip(mom.arms) 

-~FZ2 Xl + CIRP Zl Ax2 Ey - CIAPE yAz2 Xl +,q. (11) 

• 
In the above equations • represents the derivative of • with .. 
respect to time and • is the second derivative. The coefficients 

on the left of the equations are, 

11 = !!! + CIRPIy g 
(12) 

K2 = CIRP Zl Iy (13) 

13 
wt = g + ClAP Iy (14) 

14 = ClAP IyXl (15) 

(16) 

(17) 

The definitions of the various terms in Eqs. 9 through 17 are: 

Wt is the total buoy weight, Wx2 is the wind force component in the 

x2 direction, likewise for Wz2 TX2 and Tz2 are the line force 

components, p is a pressure force on a pie-shaped piece of the buoy, 

the details of which will not be presented here, Fx2 is the total 

wave and current drag force acting on the buoy in the x2 direction 
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and it was assumed that it acted at a point mid-way between the 

attachment point and where the water surface profile intersects the 

z2 axis, which was designated the distance Zl from the center of 

gravity, Fz2 is the wave and current drag force acting on a pie­

piece in the z2 direction based on the relative velocity at the 

lower chine and acting at a distance Xl from the center of gravity, 

parallel to the x2 axis, CIR is the inertia or added mass 

coefficient for the buoy in the radial, or x2 direction, CIA is 

the inertia coefficient in the axial or z2 direction, p is the 

mass density of sea water, Ax2 is the component of the acceleration 

of the water particles at Zl in the x2 direction, Az2 is the 

acceleration of the water particles at the chine of a pie-piece, y 

is the displacement volume of a pie-piece, Z2 is the distance from 

the center of gravity to where the wind force is assumed to be 

concentrated, Z3 is the distance from the center of gravity to the 

attachment point, (mom.arms) refers to the various moment arms from 

the center of gravity to the pressure forces on the pie-piece and q 

is a damping coefficient that was used in conjunction with ~ to 

provide the proper damping and period of the buoy as predicted by the 

numerical model in order that the pitch mode match the results of a 

hydraulic model study. 

Boundary Conditions 

At the anchor end of the line the velocities and displacements 

are set equal to zero for all time. Then the set of four equations 

and four unknowns as expressed in Eq. 19 reduce to two equations 

and two unknowns for determing the values of e and T at the 

anchor. 
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The line is divided into a number of equal segments, As long, 

at time = O. The segment lengths remain fixed in time except for the 

end segment which attaches to the buoy, the length of which is 

determined at each time increment. The number of segments can be 

increased or decreased according to whether the line is lengthening 

or shortening. The procedure is to use the method of characteristics 

to determine va vr ' e and T for all segments except the 

one next to the buoy_ Knowing As and e for each segment, the 

coordinates at the ends of each segment are determined. Since the 

coordinates of the attachment point at the buoy are known from the 

buoy motion subroutine, the length of the last segment can be deter­

mined, which also determines e for the last segment. Knowing the 

distribution of tension in the line, the strain in each equal segment 

can be determined and since the total length of the line is known the 

strain in the end segment can be calculated, thence the end tension 

from the stress-strain diagram. The velocities of the end segment 

are determined from the buoy subroutine. More details on the above 

procedures are presented in Ref. 12. 
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PHYSICAL CHARACTERISTICS OF THE SYSTEM 

This study considered mooring lines which are characterized by 

plaited nylon. Deep water depths were mostly considered because 

several harmonics of the resonant frequencies for such mooring con­

ditions can exist. Line diameters of 2.0, 2.5 and 3.5 inches were 

used with scopes of 0.80, 0.87 and 1.18, where scope is the original 

unstreteched length of the line divided by the water depth. Two 

conditions of wind and current were investigated. The winds were 50 

knots and 150 knots and the corresponding current profiles that were 

assumed are shown in Fig. 2. 

It is very difficult to determine the elongation characteristics 

for ropes made of synthetic fibers for a general study. Generally, 

polyester materials have less elongation than nylon for the same 

stress condition. However, the type of rope, twist-lay, plaited, 

etc., and the tightness of the strand will influence the load­

elongation curves to a great degree, so that it is possible and it 

has occurred that certain types of nylon ropes will display less 

elongation than certain types of polyester ropes. Generally, of 

course, the reverse is true. In addition, the stress-strain charac­

teristics are considerably influenced by submersion of the rope, yet 

practically no information exists on this topic. Thus, a designer 

has little information to work with unless tests can be performed, 

under water, on the very rope he plans to use. For this study is was 

assumed that the mooring rope was subject to an initial and permanent 

strain of 0.1 from the initial, or some subsequent, loading. The 

stress-strain diagram is presented in Fig. 3. Also on Fig. 3 are the 

results of some testing that are reported on in Martin (7) and Wilson 
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(15) and the stress-strain diagram used in Ref. 12. The final 

selection of the stress-strain diagram was somewhat influenced by test 

information provided by the Columbian Rope Company. 

The internal hysteretic damping characteristics for the line were 

estimated from information given in Refs. 15 and 16. The procedure 

was to measure the area (thus the energy dissipated ) of several 

hysteresis loops, approximate them as elipses and utilize the follow­

ing equations. For an eliptical hysteresis loop, the amplitude of the 

loading function Po ' is related to the amplitude of the displacement, 

Xo ' and the phase shift, B , with: 

sin B = Area within the elipse 
11' P X o 0 

(18) 

Thus, B can be determined. Simple linear damping in a continuous 

system is characterized by 

a(s,t) = E E(S,t) Q aE 
+ -at 

or in a non-linear system (as considered in this report) by 

a(s,t) = aCE) + Q ~ at 

(19) 

(20) 

where a is the stress (calculated as the line tension divided by the 

original cross-sectional area of the line). E is the modulus of 

elasticity of the material, E is the strain and Q is the damping 

coefficient. The damping coefficient, Q , can be estimated by 

considering the linear system, wherein 

(21) 

where w is the frequency of the forcing function and Ed is the 
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mean, or dynamic modulus of elasticity. Thus 

1 . -1 (EliPse area) Q = ;; Ed tan Sln 'If p X 
o 0 

Thus from Refs. 15 and 16, Q was estimated to be 

Q = 4 . 10
6 

w 
lb - sec 

ft 2 

(22) 

(23) 

For the solution of the numerical program the drag forces in the 

longitudinal direction on the line were ignored. It has been shown 

in several studies that they have negligible influence when scope is 

less than 2. The drag coefficient in the radial direction was taken 

equal to 1.4 and the added mass coefficient was given the theoretical 

value of 1.0 for a smooth circular cylinder. The saturated mass 

density of the line was developed as 

lJ = 1.71 02 (24) 

where lJ is the mass per foot and D is the line diameter in feet. 

Equation 24 was based on a saturated mass density of the line of 2.17 

slugs per cubic foot. 

A physical description of the buoy is presented in Ref. 12. 

Several coefficients were derived for the buoy from experimental 

information. The drag coefficient in the x2 direction is a function 

of Froude number, but for the relative velocities considered here it 

was felt it could be assumed to be constant at 0.035. The added mass 

coefficient, CIR ' was 0.4. 

In order to obtain similarity between the numerical model and the 

results of the hydraulic model study reported in Ref. 3 with respect 

to response decay curves, it was necessary to arbitrarily modify the 
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usual expression for drag force in the z2 direction of the buoy by 

making the force proportional to the velocity instead of the velocity 

squared. In Eq. 10, Fz2 was established for one pie-piece as 

Fz2 = C n(40)2 l-~ V 
DA 4 12 2 z2 (25) 

Thus the drag coefficient is no longer dimensionless. For this work 

the value of CDA was 12.0. The value when the relative acceleration 

in the z2 direction at the chine was positive of CIA was taken as 

3.0, and 0.8 when that relative acceleration was negative. The 

auxiliary damping coefficient, q , in Eq. 11 was given the value 

200,000 ft-lb-sec. The distance X J was determined to be 9.0. The 

dimensional wind drag coefficient, , where W = C p. V2/2 Ow a1r w 
was determined experimentally in Hath (13) to be 140. The resulting 

buoy motion due to the above selection of coefficients is given in the 

next section. 
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NUMERICAL RESULTS 

Longitudinal and Transverse Motion of the Line 

One way to check a numerical model such as the one presented here 

is to compare the results from it to those from a closed solution of 

a simplified problem. This was done for the case of a taut vibrating 

string, the solutions of which are well known. The development of 

the analytical solution will be presented first, followed by compar-

isons of analytical results with those from the numerical model. 

Consider a straight, weightless line held vertically as shown in 

Fig. 4. The line has a cross-sectional area of A and a modulus of 

elasticity of E The initial tension in the line is T 
o 

At 

z = L the line is forced with a longitudinal excitation, Zo sin wt , 

where w is the radian frequency of the excitation, and it is 

assumed that the initial tension is adequate to preserve the condition 

of positive tension in the line at all locations and times. It is 

assumed that the effects of damping are negligible. The vertical 

displacement of a particle of the line will be designated as ~ and 

the strain in the line is then ~z ' where the subscript indicates 

the partial derivative with respect to z Only the steady state 

vibration solution to the problem is desired. It is well known that 

the governing equation is the wave equation, which is: 

(26) 

where ~tt is the second derivative of the displacement with respect 

to time and a turns out to be the celerity of an elastic wave along 

the line also given by Eq. 2. 
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The displacement is then a function of the coordinate, z ,and 

the time, t ,and the boundary conditions are: 

z;(o,t) = 0 (27) 

Z;(L,t) = Zo sin wt (28) 

It should be noted that L »Z and that the problem has been 
o 

linearized by imposing the boundary condition at z = L instead of 

the true condition, z = L + Z sin wt 
o 

The solution is obtained 

by assuming that it is a product in the form: 

z;(z,t) = (A cos ~ z + B sin ~ z) sin wt a a (30) 

By imposing the first boundary condition it is seen that A = 0 

By imposing the second boundary condition it is seen that B = Z / wL 
o a 

The solution for the displacement due to dynamic motion is then 

z;(z,t) = Z I . wz . t 
L 

S1n - S1n w o • w a S1n -
(31) 

a 

and for the strain: 

w 1 wz 
z;z(z,t) = Zo a . wL cos a sin wt 

S1n--
(32) 

a 

MOst ropes do not have linear elastic characteristics, but if 

they are stressed to at least 20% of their ultimate strength the 

stress strain diagram becomes approximately linear. The linear 

condition was assumed for this section of the work. 

For a linear elastic material the strain is directly proportional 

to the stress through the modulus of elasticity, so that the solution 

for the dynamic line tension, T ,is 
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T(z, t) w 1 wz. = AE Zo - cos -- S1n wt a . wL a S1n -
(33) 

a 

For the total tension the steady tension, To ' must be added to 

Eq. (33). By substituting Eq. 33 into Eqs. 26 through 28 it is seen 

that it is the solution desired for the steady state vibration 

condition. 

Equation 33 shows that the line tension has infinite values where 

. wL 0 S1n - = This will occur when 
a 

wL - = 11 11' a n = 1,2,3, ..• 

(The case for n = 0 is a trivial case where either L = 0 or 

w = 0) 

The numerical model was tested by modifying it to consider a 

(34) 

linear elastic material with no damping and with longitudinal motion 

only. A frequency of 0.7 radians per second was used to represent 

ocean wave frequencies that can occur as strong swell. Several water 

depths, or lengths of line, were checked and Table 1 shows the results. 

The line tensions were plotted by the computer for the anchor 

and the buoy end as functions of time. Examples of such plots are 

shown as Figs. 5 and 6. It was also seen by inspection of the 

printed output that nodes of zero tension fluctuation occurred at the 

positions on the line which are predicted by Eq. 33. 

It was attempted to create a resonant condition by selecting a 

frequency such that wL/A = 211' The purpose was to investigate the 

effects of internal damping on preventing infinite response as 

predicted by Eq. 33. However, even by setting the damping coefficient, 

Q , equal to zero, infinite response was not obtained, which 
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indicated that the numerical solution as presented was naturally 

damped. At this writing it has not been determined why the numerical 

solution as presented here is naturally damped. 

It was also discovered that the full amount of damping, as 

predicted by Eq. 23, produced a numerical instability in the program. 

However, when one-tenth of the theoretical value of damping was used, 

the solution was stable for most conditions and it is felt that this 

degree of damping in conjunction with the natural damping will produce 

results that will approximate the action of a real nylon line. The 

results of testing the solution for a 20,000 feet long line are given 

in Table 2. 

The results show that for the conditions assumed the oscillations 

in tension were reduced by one-third. For frequencies that were not 

near the resonant frequencies the damping had little influence on the 

oscillations, as expected. 

The numerical model was also checked in the transverse, or x 

direction. In this case the steady state transverse vibration was 

determined for all positions, z , and time, t The analysis 

assumed that displacements were very small and that the tension in 

the line was constant in time and position. 

The assumed conditions were that both ends of the line remain 

fixed and at time equal to zero the transverse velocity of the line 

was sinusoidally distributed along the line. As time progressed the 

horizontal displacement of the line was also longitudinally distributed 

and the following development will show the closed solution for the 

horizontal displacement, n(z,t) The boundary conditions for this 

problem are, 



n(o,t) = n(L,t) = 0 

The initial condition is 

( ) V . wz nt Z,o = 0 S1n b 
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where Vo is any convenient velocity amplitude and b is the 

longitudinal celerity of a displacement wave along the line given 

also by Eq. 3. 

The governing equation is again the wave equation, 

A product solution is assumed and the general form is 

( ) (C w D· w ) . n z,t = cos b Z + S1n b Z S1n wt 

(35) 

(36) 

(37) 

(38) 

After applying the boundary conditions and the initial condition, the 

solution is found to be, 

v w 
(t) o. z. t n z, = - Sl.n 0 S1n w w (39) 

Equation 39 shows that there are nodes on the line of zero displace-

ment for all time. In the numerical program the tensions were set to 

be constant with time and position and all drag and added mass 

coefficients were set equal to zero. 

For the numerical work, an initial tension of 3905.2 pounds was 

assumed in addition to a frequency, w , of 0.251 rad/sec and a line 

length of 20,000 feet. It is seen, then, from Eq. 39 that nodes 

should occur in the line at z = 5,000, 10,000, l5,OOO,and 20,000 

feet. The results of the numerical work showed that the nodes 
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occurred at about z equal to 5400, 10,000, 15,400 and, of course, 

20,000 feet. 

The maximum magnitudes of the displacements should be 18.3 feet, 

as predicted by Eq. 39. Figure 7 shows that the displacements were 

not perfectly symmetrical, mostly due to the fact that the nodes did 

not occur exactly where they were supposed to occur. However, the 

average maximum displacement as determined from Fig. 7 is 18.3 feet. 

The conclusion from the above tests was that the rating of the 

numerical model can be described as from good to excellent, the first 

rating applied to the transverse motion and the second referring to 

the longitudinal motion. 

Many buoy moorings are established with a very taut line running 

almost vertically from the anchor to the buoy. It will be shown 

below that the resonant length or frequency of the mooring line will 

depend a great deal on the type of buoy that is used at the water 

surface. 

One condition for consideration is that shown by Fig. 4 where 

the longitudinal displacement at the top of the line is imposed as 

the boundary condition. The equation of motion in terms of displace-

ment is given by Eq. 31 and the line tension is given by Eq. 33. 

These equations show that resonant conditions exist when wL/a = nn 

Consider next equal conditions except that the boundary condition 

at the top of the line is a force given by 

f L = F sin wt z= 0 
(40) 

The new boundary conditions, for a material with a linear stress-

strain relationship, are given by Eq. 40 and 
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~ (L,t) = 1- F sin wt z AE 0 

On substitution of the boundary conditions into Eq. 30, one again 

finds that A = 0 and that 

thus, 

B w (&)L. 1 F . t - cos - S1n (&)t = - S1n (&) a a AE 0 

F 
B - 0 a __ l~~ 

- AE w wL 
cos -a 

and the solution for displacements is, 

F 
( ) 

0 a 1 . (&)Z . t 
~ Z, t = - - L S1n - S1n (&) AE w w a cos -a 

(41) 

(42) 

(43) 

(44) 

The curious difference between Eqs. 44 and 32, is that infinite 

responses occur for Eq. 32 at (&)L/a = nw but for Eq. 44 they occur at 

w 
wL/a = n '2 • 

For design purposes the resonant conditions should be avoided. 

For very taut moorings that approximate the configuration shown in 

Fig. 4 the most serious mode of motion will probably be the longitudi-

nal one. Damping may be relatively low. The resonant length of line, 

given a particular wave frequency, will then depend on the boundary 

condition at the top of the line. 

Consider two types of buoys that may conceivably be moored to 

nearly vertical mooring lines at the air-water interface. One buoy 

is a surface following large disc and the other is a non surface, or 

relatively stable, spar. For a flexible mooring line the large disc 

will impose a displacement at the upper end of the line as it closely 
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follows the undulations of the water surface whereas the spar buoy 

will impose a time varying force on the line as the waves pass the 

spar. For a particular wave frequency the resonant length of line for 

the disc mooring will be 

L=n.!!. 
00 

n = 1, 2, 2, ••• 

For the spar buoy, the resonant length of mooring line will be 

1I'a 
L = n 200 n = 1, 3, 5, 

(45) 

(46) 

For other buoy types, such as the aid to navigation buoys used by the 

U. S. Coast Guard, some condition between Eqs. 45 and 46 will exist. 

In addition, several wave frequencies exist at sea and all resonant 

conditions with respect to the entire wave frequency spectrum should 

be investigated. 

To illustrate with numbers the foregoing concepts, consider a 

common ocean wave period of seven seconds. The frequency will be 

0.90 radians per second. Assume that a one-inch diameter nylon line 

(that is nearly neutrally buoyant) is used and that it is pre-stressed 

to 2200 pounds. The modulus of elasticity will be about 7.5 x 106 psf 

according to Fig. 3. The saturated density of the line will be about 

0.0118 slugs per foot. Thus the celerity of a longitudinal elastic 

wave in the line will be about, 

or, 

a = .00547 x 7.5 x 106 

0.0118 

a = 1860 fps 

(47) 

(48) 
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For the disc buoy, the resonant lengths of mooring line will be 

6,500 feet, 13,000 feet, etc. For the spar buoy, the resonant lengths 

of line will be 3,250 feet, 9,750 feet, etc. It should be stated 

again for emphasis that all wave frequencies should be examined for 

the resonant lengths of the line and the type of buoy must be given 

careful consideration. 

Now consider the equations for line tension for both the above 

conditions. For the disc buoy the tension is given by Eq. 33. For 

the spar buoy the tension will be, 

T(z,t) F 1 wz. = 0 wL cos -- S1n wt cos __ a 
(49) 

a 

For both conditions the dynamic line tension is a maximum at the 

anchor! For the disc buoy the dynamic tension at the buoy may be zero 

if wL/a = nn/2 with n = 1,3,5, 

line tension at the buoy will be 

For the spar buoy the dynamic 

F sin wt o and the displacement will 

be zero if wL/a = nn n = 1,2, •.• 

Buoy Motion 

A necessary part of this study was to select the proper values 

of the coefficients in Eqs. 9 through 17. The procedure was to rely 

heavily on the 1:10 scale model study in Ref. 3. In particular some 

response decay curves for the pitch and heave motions were generated 

that implicitly display the effects of all the coefficients. By trial 

and error the coefficients were evaluated for the numerical model 

until the predicted response curves nearly matched the best estimate 

for the response curves of the prototype. The response curves for 

the prototype were estimated from the response curves from the scale 
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model study by considering the Froude modeling relationships and the 

shift in natural periods due to different degrees of damping. 

Hydrodynamic damping in the model studies should be greater than in 

the prototype because of the Reynolds number scale effect. The 

natural period in heave for the prototype predicted by the model study 

was about 3.6 seconds. After accounting for the Reynolds number 

effect, the period was reduced to 3.2 seconds. The period in heave 

from the numerical model was 3.1 seconds, which was considered to be 

close enough. Peaks in tension spectra from prototype measurements 

occur at periods of from 3.1 to 3.4 seconds and it is predicted here 

that they were due to the heaving motion of the buoy. The model study 

also showed a ratio of 1.128 between the heave period and the pitch 

period. The ratio for the numerical work is 1.148. 

Figure 8 presents the normalized pitch response decay curve for 

the numerical work and the results from the hydraulic model study 

where the normalizing pitch is the pitch at time equal to zero and the 

normalizing time is the natural period. A similar curve is presented 

in Fig. 9 for the heave motion; however, the beginning portion of the 

data from the hydraulic study appeared to be influenced by the release 

of the buoy model at the start of testing. Thus the curve for the 

hydraulic model was arbitrarily shifted to the left so that the 

subsequent vibration would be in phase with those from the numerical 

work. 

One minor but interesting phase of this work was to observe the 

predicted motion of the buoy on the surface of a wave. For this part 

of the work it was assumed that the buoy was moored in 200 feet of 

water with an elastic material that produced an equivalent spring 
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constant at the buoy of 10 lbs/ft, always directed toward the anchor, 

with an initial tension of 50,000 lbs. As in all the work involving 

waves, the wave height was built up linearly with respect to time over 

one wave period. Thus Fig. 10 shows how the wave height was increased 

over the first wave period and how the buoy and mooring behaved for a 

wave 260 feet long and 36 feet high. For this case the mass-spring 

system in conjunction with the water particle acceleration was such 

that the attachment point was exposed to the air shortly after 14 

seconds and the program was written to stop for such an occurrence. 

Figure 11 shows the buoy successfully negotiating the same wave for 

the free-floating condition and Fig. 12 shows a successful transit 

of the moored condition when the wave height was reduced to 30 feet. 

A much longer and higher wave is presented in Fig. 13. Figure 13 

clearly shows the buoy heaving on the wave at the natural damped 

period of 3.1 seconds, as well as at the period of the wave. 

Water Sheave 

Another minor but very interesting investigation made during this 

study was that which is sometimes referred to as the "water sheave" 

effect. An illustration of the problem is, say, a mooring in 20,000 

feet of water subjected to a ISO kt. wind. At some time the wind 

suddenly shifts 1800 and blows the buoy back along the alignment of 

the mooring line until it and the line reach new equilibrium positions. 

How the line tension varies during the transient motion has been in 

question. It is felt that the form of the line tension solution 

presented here, based on the method of characteristics, is particularly 

well suited to handle this problem in a numerical manner. 
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A similar problem as that posed above was investigated. However, 

in order to save computer time the top of the line was translated at a 

higher velocity than would be the case if the wind drag only on the 

buoy were reversed. First it was determined that if the buoy broke 

free from the mooring, alSO kt. wind would push it through the water 

with a speed of 13 ips. It was decided to translate the line at the 

conservatively much higher velocity of 25 ips, increasing it linearly 

from 0 ips in the period of 20 seconds. An initial "in place" or 

tensioned scope of about 1.3 was assumed and the initial non­

equilibrium tension of 7000 lbs. was established with a line diameter 

of 1.5 inches for a material with characteristics as shown in Fig. 3. 

The first computation consisted of fixing the top of the line in place 

and allowing it to reach an equilibrium position. Both positions are 

shown at time equal to zero on Fig. 14. Then the line was moved to 

the left with the velocity function presented above. The sequential 

positions of the line as determined by the numerical computations 

are shown in Fig. 14. 

The tension in the line dropped during the first 150 seconds and 

then gradually increased until nearly rupturing the line, at which 

time the computations were stopped. During the increase in tension 

phase the maximum tension occurred at about 0.067 the distance down 

the line. The line length changed in accordance with the state of 

tension along the line. The tension contours on the s-t plane are 

shown in Fig. 15. It should be noted when examining Fig. 15 that 

station 1 represents the anchor and subsequent station numbers are 

spaced 866.7 feet apart. It can be seen that the tension at the 

anchor decreased for about the first 150 seconds and then steadily 
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increased. Toward the end of the computations the tension in the line 

was nearly constant with respect to line position, which is reasonable 

by inspection of Fig. 14. 

If the top boundary condition had been the actual buoy with the 

wind only driving it, the tensions would have been lower because of the 

lower buoy velocity and because of the differences in the initial 

loading condition. When the horizontal component of the line tension 

at the buoy had equaled the wind drag of 10,800 pounds the buoy-motion 

would stop. Thus it can be seen that the conditions imposed were much 

more severe than what would have been experienced at sea. If the 

submerged weight of the anchor were less than about 10,000 pounds it 

would have been lifted from the bottom (assuming no adhesion to the 

bottom) at around 1000 seconds or more. If the real boundary condition 

had been imposed at the buoy end, the motion would have been quite 

slow and the computer time necessary to complete the problem would 

have been prohibitive within the budget for this study. 

Effects From the Environment at Sea 

The main purpose of this research was two-fold; 1.) to complete 

the debugging of the numerical program and to test it against closed 

mathematical solutions, as already discussed, and 2.) to gain some 

insight into the influence on dynamic line tensions from different 

wind and current loads and different line scopes. The work related 

to the first item has been presented. For the second purpose it was 

decided to design a few moorings in 20,000 feet of water for certain 

scopes for a maximum wind condition of 150 kts., subjecting each 

mooring to waves of various frequencies. Then the same moorings were 

tested with the same waves but with a moderate wind velocity of 50 kts. 
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The current velocity profiles corresponding to the two wind velocities 

are presented in Fig. 2. 

As presented previously, the computer program first determined 

the steady state, or equilibrium, position of the lines. The five 

different conditions are shown in Fig. 16. In all cases the equilib­

rium tension in the line was kept below 47% of the breaking strength 

as predicted by Fig. 3. Thus three diameters were selected, as shown 

in Fig. 16. A summary of the load and scope conditions is given in 

Table 3. 

Two short runs were made in shallow water in order to obtain a 

brief view of the influence of fairly large waves on line tension. 

The steady load conditions for these two runs are summarized in Table 

3. The profile equilibrium positions have not been included in a 

Figure because they were practically straight lines. 

The dynamic program based on the method of characteristics was 

compared to the steady state program in terms of the static loads. 

The procedure was to assume a water depth of 10,100 feet, a scope of 

2.02, diameter of 3 inches, a 100 kt. wind, no wave and a surface 

current of 6 kts. As before, the steady state program determined the 

equilibrium conditions, which established the initial conditions for 

the dynamic program The dynamic program was then allowed to run to a 

real time of 6S seconds during which no environmental conditions were 

changed. The configuration of the line changed somewhat, but not 

beyond what was felt were acceptable limits. It was found that the 

angle at the top of the line decreased (which was anticipated because 

of the change from equal angle increments to equal distance increments 

along the line) as well as the angle at the bottom of the line. The 
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program ran until the angle at the top decreased to a mimimum value, 

and then was increasing to when the computations were stopped. The 

line tensions were re-distributed somewhat but the total line length 

and the buoy coordinates changed very little. A summary of the 

computations is given in Table S. 

It was next desired to subject the five mooring conditions to 

waves of various frequencies, or lengths. In each case the wave 

height to length ratio was kept constant at 1:15. Thus the waves were 

not nearly breaking but also they could not be classified as small 

amplitude waves. The dynamic tensions at various stations along the 

line were determined and plotted by the computer. Generally, the 

maximum dynamic tensions occurred at the buoy or at the anchor. 

Examples of tensions at the buoy and at the anchor are presented as 

Figs. 17 through 32. Point 31A refers to the attachment point at the 

buoy_ It will be noticed that other frequencies, in addition to the 

frequency of the imposed wave, are present. All periods of frequencies 

in evidence will be accounted for later. 

The computer outpup included tension contours in the s-t plane. 

Examples are shown for conditions I through V for the 500 feet long 

wave as Figs. 33 through 37. The value of each contour line has not 

been indicated but can be determined by the reader by referring to 

Figs. 17 through 32. The important thing in Figs. 33 through 37 is 

to notice the pattern of line tensions. The nodes of zero or small 

tension fluctuations are clearly visible, as are the regions of 

maximum tension fluctuations. Equations 33 or 49 can also be used to 

approximate the locations of the nodes if the z is replaced with s 

That is, the nodes occur where cos ws/a = o. A comparison of the 
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results obtained from the numerical model with those from Eqs. 33 

and 49 is presented in Table 6. The comparison is fairly good except 

at the highest wave frequencies. Thus the position of the nodes can 

be estimated from Eq. 33, regardless of the line curvature. This 

introduces the possibility of determining the best position for locat-

ing sensitive instrumentation, at least with respect to line position. 

That is, the positions of minimum displacement variation can be 

determined from Eqs. 31 and 44 by setting . (Us 0 
S1n - = a 

minimum tension variation can be determined by setting 

, or the 

(Us cos - = 0 or 
a 

the minimum line velocities can be determined from a contour map of 

velocities or by taking the total time derivatives of Eq. 31 or 44. 

A complete summary of the runs made with waves for conditions 

I through V is given in Tables 7 through 11. Included in the Tables 

is the value of the damping coefficient, Q , used, the range, or 

double amplitude, of dynamic tension, the mean value of line tensions 

at the end of the run, the periods of the frequencies evident in the 

output records and a calculated line tension based on Eq. 33 for which 

the length of the line was taken as the "stretched" or "in-place" 

length at time equal to zero, and the modulus of elasticity was taken 

as that corresponding to the tension in the top of the line at time 

equal to zero. 

It is desirable to be able to display and compare mooring line 

tensions in a way that takes into account the difference in line 

diameter and length, the differences in wave height and frequency and 

the resonant frequencies. Thus it is desirable to normalize the 

tensions and corresponding frequencies to compare the results of 

different types of moorings. The normalizing factor for tensions for 
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this study was based on the total saturated mass of the line 

(excluding the added mass) and a characteristic wave acceleration. 

Thus 

Normalizing force = p L H W2 

Since eq. 33 can predict the nodes in the line fairly well for the 

moorings presented here, it was felt that Eq. 34 may suffice for 

predicting, at least approximately, the resonant frequencies with 

(SO) 

regard to line tensions despite the presence of considerable curvature 

in the line. Thus the first modal frequency predicted by Eq. 34 was 

used as the normalizing frequency. Conveniently, the first resonant 

condition should occur at flfl = 1.0 and the subsequent higher mode 

resonant conditions occur at f/fl = 2.0, 3.0, 4.0, etc. The resonant 

frequencies of interest for the five conditions are presented in 

Table 12. The resulting normalized frequency response curves for 

conditions I through V are presented as Fig. 38 for mooring line 

tension at the buoy and Fig. 39 for mooring line tension at the anchor. 

Admittedly, the data is sparse, but the trend for moorings considered 

here is clear. That is, the greatest dynamic response, especially at 

the resonant conditions, occurs for the higher wind conditions. The 

next most influential parameter is the line scope. It has already 

been seen, and is common knowledge, that scope is a most important 

parameter for steady state loads. The responses at higher frequencies 

tend to be damped out due to hydrodynamic action. No data was 

obtained for flf = 1.0 because such a condition would be due to n 

waves considerably longer than 1000 feet and such long waves were 

uneconomical to consider. However, little energy exists for waves 

longer than 1500 to 2000 feet in most wave spectra. 
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With several curves like Figs. 38 and 39 for a complete range of 

water depths, scopes, line diameters and types, it may be possible to 

generate a non-dimensional empirical solution for dynamic line tensions 

for any homogeneous one point mooring. Or perhaps analytical transfer 

functions based on linear systems, which are being developed by others, 

can be compared to results like Figs. 38 and 39, which consider most 

of the non-linearities in the problem. This subject has been left 

for future study. 

In order to test the program for quite shallow water conditions 

and to gain whatever information possible with just two runs, condition 

VI for a depth of 150 feet and condition VII for a depth of 1000 feet 

were investigated for a wave 600 feet long and 40 feet high. 

For the depth of ISO feet the sequential positions of the line 

are shown in Fig. 40 from time zero to 13 seconds. At about time 

equal to 14 seconds the line tension became negative and the program 

stopped because a square root of the negative tension occurs. The 

line tension, which was nearly constant along the line at any time is 

shown in Fig. 41. 

For the depth of 1000 feet the line remained nearly straight for 

all motion. The line tensions again were nearly constant along the 

line at any time. The fluctuations in the tension at the buoy and at 

the anchor are shown in Fig. 42. It should be recalled for both 

conditions VI and VII that the wind velocity was SO kts. 
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SUMMARY AND CONSLUSIONS 

A review of the basic equations for the numerical modeling of the 

mooring line motion based on the method of characteristics and the 

motion of the buoy has been made. Solutions for a homogeneous mooring 

line have been presented which include hysteretic damping and hydro­

dynamic damping. In addition, a summary of analytical solutions for 

a straight, taut mooring line has been presented and it was attempted 

to apply the procedures developed to the single point curved, or less 

taut, moorings. It was found that this approximate procedure did 

poorly for estimating mooring line tension but did quite well in 

estimating the positions of the nodes of tension and in predicting the 

natural resonant frequencies of the line. 

A new way of presenting frequency response curves for taut or 

slack mooring lines subjected to waves was suggested. The normalizing 

procedure makes it possible to show the frequency response for lines 

of different lengths, diameters and materials on the same scale. Thus 

the influence of scope and wind magnitude on dynamic mooring line 

tension was presented while normalizing the influence of line diameter. 

It was found that smaller scope and/or higher wind increased the 

dynamic tensions drastically, as well as the steady state, or mean 

line tension. 

Two runs were presented for shallow water. It was seen that a 

large wave in ISO feet of water would have been disastrous to a 2 inch 

diameter line. However, the same wave in 1000 feet of water with the 

same line and scope produced reasonable dynamic tensions. It was 

seen that the tension was nearly constant along the line at any time. 
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Probably a static solution approach would be adequate wherein the 

line tension would be determined based on the sequential positions 

of the buoy on the wave and the subsequent change in scope without 

regard to accelerations. However, this procedure would be very inade­

quate for deep water moorings. 

A presentation of the water sheave problem was made which 

illustrated an additional application for the numerical program. 
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TABLE 1. - COMPARISON BETWEEN llIEORY AND nm NUMERICAL MODEL FOR 
LONGITUDINAL DYNAMIC TENSIONS IN A STRAIGHT LINE. 

Depth or Variation in Line Tension Variation in Line Tension 
Line Length at the Anchor (lbs) at the Top of the Line 

(ft) (lbs) 

Num. Model Eg. 33 Num. Model Eg. 33 

5,000 1,380 1,330 296 273 

10,000 3,250 3,200 2,990 2,940 

15,000 1,640 1,600 990 932 

20,000 1,760 1,750 1,170 1,172 

Line diameter = 1.5 inches 6 
Modulus of Elasticity = 13.1 x 10 psf 
Line density = 0.02439 slugs/ft (same as sea water) 
Amplitude of forcing motion = 15 ft 
Frequency of forcing motion = 0.7 rad/sec 

TABLE 2. - COMPARISION BETWEEN NATURALLY DAMPED AND FORCEFULLY DAMPED 
LONGITUDINAL VIBRATIONS FOR A DEPTH OF 20,000 FEET. 

Value of the Variation in Line Tension Variation in Line Tension 
Damping Coeff., at the Anchor (lbs) at the top of the Line 
Q (lbsl 

Num. Model Eg. 33 Num. Model Eg. 33 

0 3,237 00 3,677 00 

4xl05 
2,085 N.A. 2,348 N.A. 

w 

Same line and forcing characteristics as for Table 1, except: 
Frequency = 0.6103 rad/sec 
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TABLE 3. - SUMMARY OF STEADY LOAD CONDITIONS FOR THE FIVE MOORINGS IN 
20,000 ft. TilDe = 0 

Condition Wind Line "Stretched" Tension at Tension at 
No. Vel. Dia. Scope Scope Buoy (lhs) Anchor (lhs) 

(Kts) (in) \ UIT , UIT 

I 150 3.5 0.80 1.03 99,804 86,614 
.47 .41 

II 150 2.5 0.87 1.11 47,777 41,077 
.44 .38 

III 50 2.5 0.87 1.03 16,177 9,427 
.15 .09 

IV 150 2.0 1.18 1.50 27,699 23,596 
.40 .34 

V 50 2.0 1.16 1.34 6,983 2,635 
.10 .04 

Note: Scope = Length of line on land f water depth 
"Stretched" scope = Length of line under load, in place f water 
depth 
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TABLE 4. - SUMMARY OF STEADY LOAD CONDITIONS FOR THE TWO MOORINGS IN 
SHALLOW WATER. Time = 0 Wind Velocity = 50 kts 

Condition Water Line "Stretched" Tension at Tension at 
No. Depth Dia. Scope Scope Buol ~lbsl Anchor ~lbs) 

(ft) (ins) ~UH ~UH 

VI 150 2 1.32 1.50 2,021 2,001 
.03 .03 

VII 1,000 2 1.32 1.50 2,564 2,394 
.04 .03 

TABLE 5. - COMPARISON OF EQUILIBRIUM CONDITIONS BETWEEN THE STEADY STATE 
PROGRAM AND mE DYNAMIC PROGRAM 

Program Time Angle Angle Tension Tension Total X-Coordinate 
(sees) at at at at Line of Buoy 

Buoy Anchor Buoy Anchor Length (ft) 
(Rad) (Rad) (lbs) (lbs) (ft) 

Steady 0 1.089 0.097 19,977 15,383 24,327 21,531 
State 

Dynamic 65 0.902 0.021 21,817 12,141 24,252 21,320 

Steadr 1.21 4.66 0.915 1.265 1.002 1.010 
DynamiC 
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TABLE 6. - COMPARISON OF TENSION NODES BETWEEN THE NUMERICAL MODEL AND 
EQ. 33 

Wave Node Position from Node Position from 
Condition Length Numerical Model Eq. 33 

(ft) (ft) (ft) 

I 500 4,800 6,920 

18,200 20,600 (at buoy) 

II 145 4,440 3,680 

11,600 11,000 

18,900 18,400 

325 5,900 5,500 

17,000 16,500 

500 6,240 6,800 

19,500 20,400 

1,000 10,600 9,650 

III 145 4,800 ? 7,400 

10,300 ? 12,300 

14,400 ? 17,200 

325 3,910 3,690 

11,700 11,100 

500 5,150 5,150 

15,100 15,400 

630 5,500 4,600 

16,000 13,800 

1,000 7,550 6,450 

18,700 19,300 



46 

TABLE 6. - Continued 

Wave Node Position from Node Position from 
Condition Length Ntaerica1 model Eq. 33 

(ft) (ft) (ft) 

IV 150 4,020 3,130 

11,200 

11,250 18,100 

215 1,030 5,050 

11,400 15,200 

500 8,003 6,800 

21,600 20,400 

600 8,350 1,450 

23,300 22,300 

V 150 2,510 

9,800 1,550 

12,500 

215 3,400 

9,100 10,200 

460 4,450 ? 4,360 

13,100 

500 4,450 4,580 

13,100 

600 4,450 5,000 

10,500 ? 15,000 



TABLE 7. - LINE TENSIONS AND PERIODS FROM WIND AND WAVE EXCITATION FOR CONDITION I 

Wave Wave Wave Damping Conditions at 
Ht. Length Period Coef. 
(ft) (ft) (sec) Q.(&) 

Buoy 20 
( 1bS) 

ft 2 

33.3 500 9.88 4x105 6500 162 12600 5100 
97750 4.9 94500 9.8/4.9 91950 

10 

4.9 

Items in Table: 
Dynamic Range From 
Tension Eq. 33 
Range 

Mean Periods 
Tension 

Anchor 

12000 8090 
89300 9.8 

"" .....:s 



Items in Table: 
Dynamic Range From 
Tension Eq. 33 

TABLE 8. - LINE TENSIONS AND PERIODS FROM WIND AND WAVE EXCITATION OF CONDITION II Range 

Mean Periods 
Tension 

Wave Wave Wave Damping Conditions at 
Ht. Length Period Coef. 28 for 325 16 for 325 ---4fur-325 
(ft) (ft) (sec) Q.w Buoy 20 10 Anchor 

(~) 
26 for 1000 14 for 1000 3 for 1000 

ft2 

9.7 145 5.32 4x105 6100 4800 4800 
45350 5.2 43800 5.2 42400 5.2 

5000 
41100 5.2 

21.7 325 7.96 4xl05 18000 52700 4000 11000 16000 5606 12400 
46500 7.9 46000 8.0 44500 7.9 44500 7.9 44100 7.9 42800 7.9 

16000 52700 
42500 7.9 

33.3 500 9.88 4x105 3100 7660 5800 1200 
47050 9.8/4.9 45400 9.8 43800 5.0 

5500 8200 
42750 9.8 

66.7 1000 13.97 4x105 15600 7500 16000 10800 10700 8000 15700 
50800 14.0 49900 14.1 49400 14.0 49400 7.0/14.1 48400 14.0 46800 14.1 

17000 8370 .;.. 
46500 14.1 00 



Items in Table: 
Dynamic Range From 
Tension Eq. 33 
Range 

TABLE 9. - LINE TENSIONS AND PERIODS FROM WIND AND WAVE EXCITATION FOR CONDITION III Mean Periods 
Tension 

Wave Wave Wave Damping Conditions at 
Ht. Length Period Coef. 24 for 145 
(ft) (ft) (sec) Q.w Buoy and 325 20 15 10 6 Anchor 

(~) 28 for 500 

ft 2 22 for 1000 

9.7 145 5.32 4x105 1900 1790 1100 800 600 350 650 2080 
14750 5.4/22 13800 5.2/22 13300 5.3/22 11700 5.2/22 11070 5.2/22 10325 5.1/22 

21. 7 325 7.96 4xl05 2600 1975 2500 2000 2000 2200 2520 
15000 7.9 13950 7.8 13400 7.8 11900 8.0 10650 7.9 

33.5 500 9.88 4xl05 3500 1920 4000 1550 3400 1800 2200 2740 
14850 9.8 14600 9.8 13380 9.8 12700 9.8 12100 9.8 10600 9.7 

40.0 630 11.09 4xl05 8500 5400 2300 7000 
"'" 15250 11.2 13500 11.0 12500 11.1 11000 11.1 \0 

66.7 1000 13.97 2xl05 2200 1000 4400 4850 950 4600 3440 
15400 7.0/14 13450 13.9 13580 14.0 12120 7.0/14.1 11000 13.9 



Items in Table: 
Dynamic Range From 
Tension Sq. 33 
Ranse 

TABLE 10. - LINE TENSIONS AND PERIODS FROM WIND AND WAVE EXCITATION FOR CONDITION IV Mean Periods 
~sion 

Wave Wave Wave Damping. Conditions at 
Ht. Length Period Coef. 14 for 500 (ft) (ft) (sec) Q.I.L) Buoy 29 20 10 2 Anchor 

(lbS ) 16 for 600 

ft 2 

10.0 150 5.41 4xl0s 1900 750 550 550 
25750 5.4 25780 5.3 23880 5.4 23120 5.3 

18.3 275 7.33 4xl0s 3200 2150 1700 1900 
26100 7.2 25080 7.2 24150 7.2 23450 7.3 

33.3 500 9.88 4xl0s 4700 2100 2100 4000 1950 3900 2620 
26850 9.9 25950 9.9 25400 9.9 25080 9.9 24250 9.9 

40.0 600 10.82 4xl0s 8400 7100 5200 6900 2300 6400 6800 
V1 

27200 10.9 27150 10.8 26300 10.9 25950 10.9 25550 10.8 24800 10.9 24600 10.9 0 



Items in Table: 
Dynamic Range From 
Tension Eq. 33 
Ranse 

TABLE 11. - LINE TENSIONS AND PERIODS FROM WIND AND WAVE EXCITATION FOR CONDITION V Mean Periods 
Tension 

Wave Wave Wave Damping Conditions at 
lit. Length Period Coef. 
(ft) Cft) (sec) Q·UJ Buoy 28 20 10 Anchor 

{ 1bs } 
ft 2 

10 150 5.41 0 2200 655 1700 900 220 700 1210 
5800 5.5/30.6 5450 5.6/30.8 4700 5.5/31 3730 31 8150 31. 2 

18.3 275 7.33 0 1900 5650 1700 1800 350 800 5820 
5950 7.4/32 5450 7.5/31.6 5000 7.5/31. 2 3760 7.2/31. 5 3200 31.6 

30.7 460 9.47 0 2900 2100 1600 650 960 
5950 9.6/32 5950 9.6/31 4800 9.7/32 3840 9.7/31 3220 9.6/32 

33.3 500 9.88 0 2300 6250 1150 500 1460 6720 
6150 10.2/30.3 5020 10/31 3950 10/31 3270 10.2/33 

V1 
I-" 

40 600 10.82 0 3600 1180 2200 1800 1000 1100 2370 
6200 11/33 6100 11/33 5000 11/31 3900 11/31 3350 10.9/31 



TABLE 12. - RESONANT FREQUENCIES FOR THE VARIOUS CONDITIONS, BASED ON EQ. 34 

RESONANT FREQUENCIES (cps) 
Condition 

f1 f2 f3 f4 f5 f6 

I 0.0672 0.134 0.201 

II 0.0624 0.125 0.187 

III 0.045 0.090 0.135 0.180 

IV 0.046 0.092 0.138 0.184 

V 0.0348 0.0696 0.1045 0.122 0.139 0.174 
U1 
N 
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Note: Wave Travels From Left To Right. The Relative Positions Of The Buoy 
With Respect To The Wave Are Shown For Various Times In Seconds. 
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See Note on Fig. 10 
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FIG. 11 LARGE DISC BUOY. FREE FLOATING, DEPTH = 200 FT. 
WAVE LENGTH = 260 FT. WAVE HEIGHT = 36 FT. 



See Note on Fig. 10 

FIG. 12 LARGE DISC BUOY. ELASTIC MOORING. DEPTH = 200 FT. 
WAVE LENGTH = 260 FT. WAVE HEIGHT = 30 FT. 
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See Note on Fig. 10 

FIG. 13 LARGE DISC BUOY. ELASTIC MOORING. DEPTH = 200 FT. 
WAVE LENGTH = 500 FT. WAVE HEIGHT = 60 FT. 
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