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ABSTRACT

The spectral analysis is applied to annual series of precipitation and runoff. The precipitation series
are divided in homogeneous Pl-precipitation (no significant changes occured in gauge positions, or no significant

inconsistency in data), and non-homogeneous Pz-preeipitation (changes occurred in gauge positions, with sys-
tematic errors or inconsistency). Runoff series are either the observed values as the Ql-series. or they are
reduced to the effective precipitation as the Qz-series (precipitation minus evaporation, determined by changing

the annual values for the annual difference in water stored in river basins). Data of annual precipitation and
annual runoff of a large number of gauging stations in the United States are used, in the study, dividing them
into six areas.

The techniques of spectral analysis used in the study are described in a condensed form. Average spectra
are estimated for each of the four variables (Pl, Pz' Ql‘ QZJ and in turn for each of six areas, with the proper

tolerance limits, for the 95 percent probability level, drawn around the expected values of average spectral
densities of independent series.

Conclusions drawn are that the annual precipitation series are very close to independent time series. They
are stationary series, at least temporary stationary for the length of time of the order of available series
lengths of 50-150 years. Annual runoff and annual effective precipitation series are dependent series (with the
average first serial correlation coefficient of the order of 0.10-0.20). They are stationary series, at least
temporary stationary for the order of time length of 50-150 years. The first- and the second-order autoregressive
models of series dependence seem sufficiently accurate for the use in practical problems.

PREFACE

The contemporaneous scientific and professional literature is full at present of various claims for the on-
going climatic changes. Some of their authors forecast the eventual forthcoming of the new ice age (therefore,
they continue to speak about the present-day climate as the interglacial climate). Others claim that a warming
trend is at hand due to the man's release both of the heat in using the various sources of energy, and, through
the burning of focil fuels, also of the carbon dioxide with its green-house effect of heating the lower atmo-
sphere. The concept of the increased carbon dioxide and the resulting warming effects is a sound approach in the
analysis of man's influence on the earth's environments. Three factors, however, should be taken into account:
(1) The tremendous potential of oceans to absorb the additional quantities of carbon dioxide; (2) The increase
of production of the total green mass of modern agriculture in feeding the continuously increased population;
and (3) The need for some heating on the earth for the purpose of compensating some expected, but relatively
small, cooling in the Northern Hemisphere of the Earth, because of the future changes in distribution of solar
radiation over the Earth (Milankovich's phenomena of long-range, almost-periodic fluctuations in solar energy
distribution over the earth). Likely, the effects of the artificial heat and the carbon dioxide releases, plus
the other man-made effects on atmospheric composition and its transparency for radiation and irradiation waves,
are the most attractive short-range, middle-range and long-range objectives of monitoring changes and forecast-
ing the future climatologic effect.

The practical water resources problems impose an interest for the immediate future, say for the next 100-
200 years. This paper approaches the fluctuations of wet and dry years from the point of view what can be ex-
tracted from the best data of the near past, with the high probability that the future data will show, in the
limits of the sampling variation, the same or very close to the same characteristics of climatic and hydrologic
time processes as they were for the last 100-200 years. Some recent studies of dendrochronology may extend the
past instrumental data up to several more centuries, but with the increased errors.

This study leads to the conclusion of an unusually high "stability' of properties of major processes,
namely the stability in the fluctuations of wet and dry years of precipitation and runoff. Because the propofs
of an approximate stability of phenomena, and the projection that the stability will likely continue for some
time to come, are not as glamorous conclusions as the projection of an "ice age" or '"heating up' of many Earth's
environments. The writer hopes that the conclusions drawn in this study may give some confort to those in
practical fields of endeavor, who plan systems and make decisions, drawn on the conclusions from the best data of
the past, assuming that the near future will be similar to the past. Those who doubt this approach are invited
to place themselves at the year 1890 (with some instrumentally obtained data of about 85 years long, available
at that time), and project the behavior of those phenomena for the period 1890-1975. How surprised they would be
at the accuracy of their projections, based on the temporary stationarity of annual precipitation and annual
runoff data.

Vujica Yevjevich
August 1977 Professor of Civil Engineering and
Fort Collins, Colorado Professor-in-Charge of Hydrology and Water Resources Program
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Chapter |
INTRODUCTION

Investigations of wet and dry years of precipita-
tion, runoff, and other basic hydrologic phenomena are
as old as the earliest human water resource activities.
Even the writers of the Bible incorporated statements
on these fluctuations by referring symbolically to the
seven wet and seven dry years. These continuous inves-
tigations have paralleled similar inquiries in geo-
physics on fluctuations of annual series of climatic
variables, particularly temperature. From reliable
records of measured values of certain hydrologic
phenomena, inferences have been drawn in this paper
regarding fluctuations of wet and dry years, using
variance spectrum analysis. It is the purpose of this
introduction to put these results in perspective. The
study of fluctuations of wet and dry years is con-
ceived in this text as being equivalent to the inves-
tigation of fluctuations of annual series of the most
important hydrologic variables, here chosen to be pre-
cipitation and runoff.

1-1 Previous Papers of the Same General Title

Hydrology Paper No. 1, July 1963, under the title
"Fluctuations of Wet and Dry Years'" and the subtitle
"Research Data Assembly and Mathematical Models" [1],
dealt with the selection of samples of data, general
mathematical models of physical processes which pro-
duce the time dependence in annual hydrologic time
series, the compilation of sample data, discussion of
problems related to errors and nonhomogeneity in data,
and gave an appendix of data of annual series in modu-
lar coefficients of 140 selected runoff gauging sta-
tions from around the world.

Hydrology Paper No. 4, June 1964, with the same
title as Paper No. 1 and the subtitle "Anmalysis by
Serial Correlations" [2], dealt with annual precipita-
tion and runoff series analyzed by the method of
serial correlation or the autocorrelation technique.
The research data consisted of the six sets of annual
time series: (1) A set of 140 world-wide series of
annual rTunoff [Ql-series]; (2) The same set of these

140 series but with the estimated annual effective
precipitation [Qz-series) defined as the annual pre-

cipitation minus the annual evaporation, and computed
by adding to or subtracting from the annual runoff the
annual change in the total water stored in the river
basin at the end of each water year; (3) A set of
annual runoff series (Ql-series) of 446 river gauging

stations in western North America; (4) The same set
of 446 series but with the estimated annual effective
precipitation (Qz-series) defined by the same method

as described under (2); (5) A set of annual precipi-
tation series of 1141 gauging stations (Pl-series} in

the same region of western North America as for the
set of runoff series, with these series considered
more or less homogeneous (not affected by man's acti-
vities) and/or consistent (not having significant
systematic errors in the form of trends and jumps,
introduced by methods of measuring precipitation
and/or the change in the surroundings of gauges, which
would affect the instrument's catch of precipitation);
and (6) A set of 475 annual precipitation series
(Pz—series) in western North America, which series

have been inferred to be either nonhomogeneous
(especially through the changes in station location
and/or elevation during the time of observations) or

inconsistent (produced by the effects of changing
environment around the gauge sites during the observa-
tional period).

The analysis presented in Hydrology Paper No. 4
[2] led to the following basic conclusions:

(1) The hydrologic phenomenon of contemporane-
ously observed precipitation by instruments, particu-
larly in the form of the total annual precipitationm, is
an excellent measure of eventual climatic changes on
the scale of decades. The results show that this
variable is approximately a time independent and sta-
tionary stochastic process for a period of the most
reliable data. The time dependence, measured by the
mean first serial correlation coefficient of annual
precipitation (Pl-series), is of the order of

il = 0.028 as the average for the 1141 stations for the

period of simultaneous observations of 30 years (1931-
1960). For all years of observations available at all

stations of Pl—series, with the average series length

of 54 years, the mean value is il = 0.055. These
values imply that only the portions of 0,0282 and

0.0552 (or 0.079% and 0.305%) of the unit variances of
standardized annual precipitation [Pl-series) are

explained (or affected) by the previous year(s). In
other words, only 0.08% and 0.30% of the total varia-
tion of annual Pl-precipitation in any year is

explained, on the average, by the annual precipitation
which has occurred in the previous year. This conclu-
sion results from using both the average series lengths
of 30 and 54 years. For all practical purposes, the
annual precipitation (Pl-series) can be considered an

independent time process for time spans of many decades.

(2) The 475 annual series of precipitation (Pz-
series), inferred to be nonhomogeneous and/or inconsis-
tent, show the fl values to be somewhat larger than for

the homogeneous and/or consistent annual precipitation
(Pl-series), namely 0.053 for the 30-year period (1931-

1960) and 0.071 for the average series length of 57
for all the available observations. Any inconsistency
and nonhomogeneity, such as positive and negative
jumps in the series mean, or linear and nonlinear
trends if introduced into an independent or dependent
time series will, on the average, increase the values
of T Differences between the averages, 51 for 475
Pz-stations and 51 for 1141 Pl-stations, for the
average lengths of 30 and 54 years, are 0.025 and
0.016, respectively, which are 90 and 29 percent
greater than the corresponding values for the series
of 1141 stations, inferred to be approximately homo-
geneous and/or consistent. Regardless of the infer-
ence techniques used in separating 1614 annual preci-
pitation series into 1141 approximately homogeneous
and/or consistent, and 473 nonhomogeneous and/or
inconsistent series, the probability is high that part
of the positive serial correlation for the case of
1141 series, for both the 30 and 54-year lengths, may
be due to some nonhomogeneity and inconsistency,
present in nearly all the annual precipitation series.
This is a reasonable conclusion because it is




self-evident that the longer a time series becomes,
the larger the probability of introducing at least one
form of inconsistency or nonhomogeneity. For practi-
cal problems related to water resources conservation,
control, and development, the annual precipitation can
be considered to be either an independent or an almost
independent stationary stochastic time process, pro-
vided the effects of nonhomogeneity and inconsistency
are properly taken into account on the time scales of
many decades.

(3) The two Qz-series of annual effective preci-

pitation, worldwide series and series of North America
[4], have higher average estimated first serial corre-
lation coefficients than were found for the Pl-series

of annual precipitation. For worldwide Qz-series.
whose average length is 55 years, r
0.136.
length is 37 years, il turned out to be 0.181. Let's

L was estimated as

For Northern American Qz-series, whose average

define {P} as the time series of annual precipitation,
{E} as the time series of annual evapotranspiration,
and {Pe] as the time series of annual effective preci-

pitation. Evidently P, = P - E. Since {P} is an

approximately independent time series and the values
of ;1 for both Q,-series (P -series) are much greater

than ;1 for Pl-series, than {E}, regardless of its

dependence on {P}, must be an auto-correlated and
hence time dependent process. Because P - E = R + AW,
with AW the change in the total water stored in a
river basin at the end of each water year and R the
runoff, then E = F (AW), i.e. it is dependent on the
change AW in the stored water available for evapora-
tion, besides being dependent on the total precipita-
tion. One may expect that the potential annual evapo-
ration (evaporation where water is always available
for full evaporation potential) should also be an
independent annual process similar to the annual pre-
cipitation. Since more stored water means more water
is available for evaporation, and since the stored
water depends on the hydrologic history of previous
time intervals, the effective annual evaporation must
be a dependent process, similar to the dependence of
basin water outputs, with precipitation the input and
both these outputs dependent on the state of water
storage of various river basins.

(4) Series of annual runoff are either indepen-
dent processes, when negligible changes in the basin
stored water occur at the end of each water year, or
they are dependent processes when the storage at
years' ends fluctuates in a relatively large range in
comparison with the average annual runoff. Large
variations in water carryovers from year to year may
be considered as the principal physical factor which
affects the time dependence of both the annual evapo-
ration and the annual runoff. The two sets of annual

runoff series used in investigations gave 51 = 0.175

as the average for the 140 worldwide selected runoff
series, with the mean series length of 55 years, and

il = 0.197 as the average for the 446 runoff series

in western North America, with the mean series length
of 37 years. Both sets showed that the average first
serial correlation coefficient of annual runoff series

is close to about 51 = 0.20.

1-2 Basic Scientific Controversies Related to
Persistence in Hydrologic Time Processes

Dependence in hydrologic time series is often
referred to as hydrologic persistence. Values of the
process tend to persist in the sense that probabili-
ties of high values following high values (and the con-
verse, probabilities of low values following low
values) tend to be higher than probabilities associ-
ated with the same high (or low) values of time inde-
pendent hydrologic processes. Sometimes, the concepts
of short-range, mid-range, and long-range persistences
are used; rarely are the ranges of time intervals
associated with these concepts adequately defined.

It is generally accepted by most geophysicists
that basic climatic changes occur as long-range vari-
ations. The changes occur mainly as a result of astro-
nomical causes, related to changes in the distribution
of incoming solar energy over the earth's surface.

The Milankovich theory of astronomical causal
factors shows regular, almost-periodic changes in the
eccentricity of the earth's orbit (one complete oscil-
lation in about 93,000 years), the tilt or obliquity
of the ecliptic (one complete oscillation in about
41,000 years), and the precession of the equinoxes
(21,000 years per one complete oscillation), [3, 4, 5].
These deterministic, astronomical movements produce
long-range changes in the distribution of incoming
solar energy over the earth's surface, even under the
assumption (which is now in doubt) that no significant
changes in the solar energy constant have occurred for
the last couple of millions of years. The change in
the seasonal distribution of energy over the earth's
surface must result in changes of climate on the earth.
When ice sheets grow over the continents, the ocean
level recedes, the continental shelves become exposed
with a resulting increase in the continental surface
and a decrease in the ocean areas. This leads to
changes in oceanic processes (such as currents, heat
budget, evaporation, types of water mass exchanges,
etc.). Similarly, changes occur in the atmospheric
composition, circulation, climate and the basic hydro-
logic processes of precipitation, evaporation, and
runoff. Only well-studied geophysical problems,
examined jointly as paleo-oceanography, paleo-
meteorology, paleo-geology, paleo-morphology, paleo-
glaciology, paleo-hydrology, and other geophysical
paleo-processes, could explain the real physical inter-
actions between the astronomical, almost-periodic
movements and the various geophysical processes in
order to explain these long-range climatic changes.

Historic evidence, particularly from the last
Pleistocene ice age, confirms that long-range climatic
changes do occur on the earth. These changes undoubt-
edly affect the annual series of precipitation, evapo-
ration, and runoff of various river basins. The main
question from the hydrologic standpoint is, what are
the rates of change with time of various parameters
associated with these processes. It can be shown that
the rate of change is so small for a time span of 3-4
centuries [6] say 150-200 years of the past and 150-
200 years of the future , that the annual processes of
precipitation, evaporation, and runoff may be safely
considered to be temporarily stationary stochastic pro-
cesses, The best available observational data on pre-
cipitation and runoff of the last 100-200 years show
no significant change in the basic characteristics of
annual hydrologic processes, particularly if account
is taken of the unavoidable nonhomogeneities and/or



inconsistencies (and the sampling fluctuations of
these characteristics), to be found in the data associ-
ated with any real geophysical stochastic process.

The question which highlights the basic contro-
versy among climatologists, hydrologists, and other
specialists in geophysics could be summarized as fol-
lows: are the climatic and hydrologic processes,
taken on an annual basis, to be considered as fempo-
hanily stationary or quasi-stationarny, with a slow rate
of change of the basic characteristics of stochastic
processes for the period limited to 150-200 years of
the recent past, and by extrapolating this recent past
for the period of 150-200 years of the near future? If
This femporary stationarity was rejected, one would
then expect that the extreme events of some distant
past, especially of the post-glacial era, may occur
today--suddenly--with the same probabilities as they
occurred before; this is not a plausible hypothesis,
as the following argument shows. The biblical Noah
inundation may well have been an event produced by a
combination of extreme precipitation and the simulta-
neous melting of accumulated mountain snow and ice in
an era of general melting and retreating of ice sheets
and ice glaciers of the Northern Hemisphere. While it
is reasonable to expect the extreme precipitation event
of the Noah type to occur from time to time somewhere
in the world by change (such as the 40-days precipita-
tion event in Tunisia in September 1969, or similar
examples), the other basic condition of rapid melting
of large quantities of accumulated snow and ice does
not exist at present in most areas of interest and,
therefore, this melting cannot be compounded with simi-
lar rare events as experienced in the recent past.

This controversy has an important and very practi-
cal implication for water resources planning and
management: is it legitimate (and with a very high
probability it is) to draw information about the
characteristics of hydrologic processes and available
water resources in the last 150 to 200 years from the
best data on precipitation and runoff available in the
world, and to expect approximately the same or very
close characteristics to occur in the realization of
these processes and in available water resources in
the next 150 to 200 years? If this approach is not
justified, should then the planners of future water
resources systems use the opposite approach, namely to
speculate with various climatic change theories
(mostly supported by unreliable or at least questiona-
ble evidence), developing the inevitable conclusion
that the hydrologic processes and their characteris-
tics could suddenly or relatively rapidly evolve? In
the extreme, these conclusions may imply that the cli-
mate could rapidly deteriorate into a new ice age in
the northern parts of America, Europe, and Asia; how-
ever, this is very unlikely from the physical point of
view as the following argument demonstrates.

A recent study [6] underlines the point that the
buildup of ice sheets and large mountain glaciers is a
relatively slow process, while the melting of those
once created may be a relatively rapid process. This
implies that the rate of change in the initiation
phase of build-up of ice sheets and large glaciers is
much slower than the rate of change during their disap-
pearance. Therefore, a relatively fast rate of melt-
ing of the Pleistocene ice sheets in northern America
and northern Europe cannot be taken as the potential
rate of the buildup of a new ice sheet. Besides, the
extrapolation of the Milankovich astronomical almost-
periodic long-range fluctuations, as the predictable,
deterministic astronomic process, shows that for the
next 100,000 years little buildup of an ice sheet in
the northern hemisphere can be expected, though some
minor cooling should be expected to take place.

Considering an interval of time of about 350
years, say from 1800 through 2150 (175 years in the
immediate past and 175 years in the immediate future),
the following conclusions may be safely drawn for the
investigations of long-range water resources problems,
with a very high probability that these conclusions
will be confirmed by future observations:

(1) Processes of annual precipitation, annual
evaporation, annual effective precipitation on river
basins, annual runoff from river basins, and similar
and/or interconnected hydrologic processes may be con-
sidered as approximate femporary sfationary stochastic
processes, provided the systematic errors in observed
data (inconsistency), the man-made changes and acci-
dents in nature (nonhomogeneity in data), and the
sampling fluctuations in realizations of these random
processes, are properly taken into account.

(2) If the annual precipitation may be considered
as an approximate, temporary stationary stochastic pro-
cess in the interval of the past 150-200 years, it is a
logical analogy to consider the annual evaporation also
as an approximate, temporary stationary stochastic
process.

(3) The major time dependence in hydrologic
annual series is produced by the complex geophysical
processes of water storage in river basins, with their
random fluctuations from year to year and periodic-
stochastic fluctuations within the year. The ambiguity
of the concept of hydrologic long-range persistence as
related to the time scale of several decades, or a
couple of centuries, as contrasted with the analysis of
actual geophysical processes which create the time per-
sistence, only confuses the issues, though it may
serve particular objectives of supporting theories and
mathematical models advanced for hydrologic persistence.

(4) The more ancient the data of observed (mea-
sured) or inferred hydrologic variables are, the more
likely it is that they contain some systematic errors
(inconsistency). The use of earlier, less reliable
instruments and measuring techniques, and the ensuing
changes in instrumentation and techniques of measure-
ments, as well as the environmental impacts on obser-
vational stations, support the existence of inconsis-
tency in various series.

(5) The longer a series, the greater is the proba-
bility of some nonhomogeneity being present in the data,
produced either by man's activities or by accidents in
nature.

(6) The probability that two sample means of two
subseries of an observed series are identical is very
small. Sampling fluctuations which leave visual
impressions of trends, jumps, and light cyclicity are
often erroneously treated as populaticn trends, jumps,
and cyclicities.

(7) Some mathematical models proposed for the
description of time dependence in hydrologic annual
series may often be the results, partly or fully, of
inconsistencies, nonhomogeneities, and sampling fluc-
tuations, rather than of the underlying true geo-
physical processes as derived from large sets of series
from stations all around the world.

(8) The analysis of only a limited number of
stations, particularly when these sample series contain
inconsistency, nonhomogeneity, and evidently large
sampling deviations in comparison with the adjacent
stations, may well support a particular concept or
mathematical model, even though it cannot be justified
by the existing geophysical and/or historial evidence



about the reliability of available data for those
stations.

This investigation of fluctuations of wet and dry
years of annual series of hydrologic processes is thus
committed to using large sets of series. In using
large sets of series, the biases due to individual
series are minimized (especially the bias contained in
the form of extreme sample deviations), while inconsis-
tency and nonhomogeneity in the data may be signifi-
cantly reduced by some objective criteria of selecting
the sets of series. In some cases, the bias may be
reduced, because of the combined effect of opposing
biases in a large number of series.

It is feasible to process a very large number of
time series in the present age of large digital com-
puters, treating them as space-time processes. The
space variation is covered by a set of points in a geo-
graphical coordinate system and the time variation by
the longest observed series, reasonably consistent and
homogeneous. Results of investigations should be inde-
pendent of particular characteristics of a limited num-
ber of series in a restricted area.

It is a common practice among researchers to aban-
don and not to report on results of investigations if
the research data do not support either the approach
taken or the hypotheses advanced. Mostly, the confirm-
ing results are reported in literature. A reasonable
question may be, whether in some cases the confirming
results in the assumed approach are nothing else than
the extremes of sampling deviations, with small proba-
bilities for them to occur again in future realizations
at the same stations. The well-publicized Brueckner
35-year climatic cycle, developed for the first 70
years of hydrologic data in Europe, was not supported
by the data of the next 40-50 years. If Brueckner had
used a wide range of variables, and from several large
regions of the world, it is likely that he would not
have concluded that a regular 35-year cyclicity existed
in his climatic and hydrologic processes as he did by
using the European data only.

1-3 General Explanation of Long-Range Climatic
and Hydrologic Persistence

It is an attractive and plausible approach, at
least to the writer of this paper, to explain the long-
range climatic and hydrologic changes of annual pro-
cesses by the theory of a deterministic-stochastic cli-
matic process. The deterministic part is produced by
the processes following the Milankovich theory of
astronomical movements. The stochastic part is
explained by various random processes in the earth's
environments, or by the geophysical processes.

The distribution of incoming solar energy at the
upper atmosphere is determined uniquely at a given his-
toric time by the astronomical movements of orbital
eccentricity, tilt, or obliquity of the ecliptic, and
precision of the equinoxes for whatever the solar con-
stant may be at that time. Figure 1-1 shows periodici-
ties of the major astronomical cycles which affect the
geophysical processes. Because the computed annual
series mask the higher frequency cycles up to the year,
they are mainly affected by the lower frequencies asso-
ciated with the Milankovich astronomical processes.

The sunspot cyclicity is not a function of positions
of celestial bodies, and is not discussed here
(although it may introduce perturbations on the solar
constant). Therefore, for a given state of tectonic
plates of the earth's crust (say the positioms and
elevations of continents and continental shelves), and
for given states of accumulated snow and ice over the
various areas at a given historic time, the earth

reacts in a given manner to the deterministic distribu-
tions in space and time of the incoming solar energy.
The state of distributions of water, snow, ice, and
volatiles in the atmosphere, oceans, and on the conti-
nents predetermines the general earth's response to
these deterministic distributions of incoming solar
energy. The average existing patterns of oceanic,
atmospheric, and continental processes adjust to the
incremental changes in distributions of this energy in
an evolutive manner.

The stochastic part of the climatic process
results from the versatile stochastic processes in
oceans, on continents, in the continental crust, but
particularly in the atmosphere. The major properties
(probability distribution, time dependence) of the
stochastic part of climatic variations may be more or
less dependent on the average deterministic responses
of the earth to the earth's distribution of the incom-
ing solar energy in space and time. The random pro-
cesses of various earth's environments are mutually
dependent processes, some of them being the preceding,
causal processes, with others the resulting, effect
processes, or they may be simultaneous dependent
processes.
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Fig. 1-1. Periodicities of Major Astronomical Cycles

which Affect the Geophysical Processes.

Until evidence to the contrary comes to light, one
may consider the solar constant as a real constant,
with only the position of bodies in the solar system
being the major factor in determining the space-time
distribution of incoming solar energy over the earth.
In a condensed way, this approach to the long-range
climatic changes is based on the hypothesis that the
astronomical movements produce the deterministic part
in the averages and other parameters of the climatic



and hydrologic variables of the earth, while all types
of geophysical random processes in all of the earth's
environments (particularly in the atmosphere, with the
air being a nonconservative fluid), represent the
sources of the stochastic part of the climatic and
hydrologic variables. The dependence in the stochas-
tic part is the result of various feedback processes,
due mainly to storage or depletion in the earth's
environments of many physical equivalents of random
variables (such as vapor, water, snow, ice, heat,
volatiles, solid particles, chemicals, kinetic energy,
etc.}. The above general approach to climatic and
hydrologic changes assumes also that man's activities
and special accidents in nature (catastrophies) do pro-
duce the nonhomogeneities or nonstationarities in sto-
chastic components in complex deterministic-stochastic
series.

1-4  Selection of Investigation Method

The selection of an investigation method for the
analysis of hydrologic time series may depend on
whether a series is stationary or nonstationary. As
stated in the preceding text, the annual series of
most hydrologic time processes may be safely consi-
dered either temporarily stationary (say, approximately
stationary for a couple of centuries) or quasi-
statlonany (the trend in the change of basic population
parameters in the time span of 3-4 centuries may be
neglected), or both.

In reference [2] the investigations of fluctua-
tions of wet and dry years used the autocorrelation
technique. In this paper the spectral analysis, or
the variance density spectrum, is selected as the tech-
nique for investigation. One may question this latter
selection by asking whether the use of spectral analy-
sis provides any improvement, substantial difference
or additional information in comparison with the use
of autocorrelation technique. The question is logical
because the Wiener-Khinchine equations, as shown in
Chapter II, provide unique transformations between the
autocorrelation function (estimated by the sample
correlogram) and the spectral, variance density func-
tion (estimated either by the Fast Fourier Transforms
and smoothed, or by smoothing and transforming the
correlogram). Essentially, the two techniques should
produce the same results as two equivalent methods in
the investigation of hydrologic stationary processes.
Three reasons have induced the writer to use the
spectral analysis in this study of hydrologic annual
series:

(1) Some specialists are more exposed to the
spectral analysis technique than to the autocorrela-
tion technique; they can better see and infer the type
of stationary process in the frequency domain of spec-
tral analysis than in the time-lag domain of auto-
correlation analysis.

(2) Spectral density graphs are smoothed in two
ways: (a) by using the smoothing functions (either in
the time-lag domain by a smoothing function, or in the

frequency domain by the kernel function), and (b) by
using a large number of series in a region, averaging
the correlograms and estimating the spectral densities
at given frequencies, to obtain mean regional results.
The inference from the averaged, regional spectra is
expected to demonstrate more reliably the basic prop-
erties of any process studied than the case would be
if only a limited number of spectral graphs of indivi-
dual series were examined.

(3) New data have been accumulated since refer-
ence [2] appeared. The conclusions derived by the
autocorrelation technique may be then either revised
or reinforced by another technique regardless of the
strong interrelationship between these two techniques.
Furthermore, the United States is divided into six
regions, in this new study, in order to investigate
whether significant differences in results may be
discerned among the regions in using these two
techniques.

1-5 Objectives of Investigations by Spectral Analysis

The analysis of annual precipitation, annual
effective precipitation and annual runoff by using the
variance spectra technique has the following detailed
objectives:

(a) To show whether these hydrologic series are
independent or dependent stationary processes;

(b) To find the degree of time dependence when
it is present in time series, analyzed for sets of
series:

(c) To make inferences concerning the most appro-
priate mathematical models to be used for description
of dependence for a set of time series;

(d) To compare the degree of time dependence in
these series, especially how it increases from preci-
pitation to runoff, and

(e) To investigate the self-stationarity of
annual runoff time series from a regional point of
view.

1-6 Continuous Variance Density Spectrum Versus the
Discrete or Line Spectrum

Since previous studies have shown that annual
series of precipitation, effective precipitation and
runoff do not contain periodicities, the use of the
line spectrum (periodogram) is not the most feasible
technique to study the approximately stationary time
processes. When the range of frequencies with signi-
ficant variance densities of a stationary process must
be estimated, the line spectrum is not the most appro-
priate technique because of bias and inefficiency in
estimates. It is replaced by the technique of continu-
ous variance spectrum. For this reason, the periodo-
gram approach is not even attempted in these
investigations.



Chapter

TECHNIQUE OF SPECTRAL ANALYSIS

2-1 Mathematical Description of Time-Dependent

Hydrologic Processes

A time-dependent hydrologic process is a stochas-
tic process involving hydrologic variables. Sequences
of observations on the variables which characterize
the hydrologic processes are either continuous or dis-
crete stochastic processes. The continuous stochastic
processes found in hydrology (and some discrete ones)
are nonstationary processes, mainly because of the
periodicity found in basic parameters induced by the
diurnal, monthly, and annual astronomic cyclicities.
Various sources of trends and jumps also cause some
series to be nonstationary processes. The term process
is used here in the narrow sense of sfochastic process.
It is further assumed in these investigations that any
deterministic dependence on time, such as known trends
or built-in periodicity, have been removed from the
process under consideration. The diurnal, monthly,
and within-the-year periodicities in parameters disap-
pear by integrating a process over intervals of a year.
The discrete annual series of precipitation, effective
precipitation, and runoff considered in this study are
free of trends and low frequency periodicity. By con-
trast, any undetected nonhomogeneity in parameters of
these series, produced by various factors as discussed
in Chapter I, will cause nonstationarity, and it is
this that should be detected by using variance spectrum
analysis.

The remainder of this chapter contains a condensed
presentation of the practical variance spectrum tech-
nique, adapted to the objectives of this paper.

2-2 Variance Density Spectrum

Fourier (periodogram) analysis of a time series
tacitly assumes that the series is made up from sums of
harmonics which have fixed (or almost fixed) periodici-
ties. The continuous spectrum introduced by Wiener
overcomes this prerequisite. Spectral analysis has
been used effectively in many fields for the analysis
of the structure of time series. It is based on the
concept of the continuous spectrum, which is a
relationship between variance densities and frequencies.

The population spectral (variance) densities,
v(1), of a continuous series are obtained by the
Fourier transform, for a given angular frequency, ,
of the corresponding population continuous autocorrela-
tion fumction, p(t), by using the Wiener-Khinchine
equation:

y ix r 9
v(A) = 5 [ o(r) e dr = B { p(r) cos At dt

(2-1)

Similarly, for a discrete time series, the spectral
density function is the Fourier transform of the dis-
crete autocorrelations function, p(k),and is again a
function of A:

ik _ 1 'E
= = p(k) cos Ak.
2w i

v(d) = § p(k)e

k=-= (2-2)
In the opposite transformation, the autocorrela-
tion function is the Fourier transform of the spectral
function, so that for the continuous case
- +o
p(r) = [ voyel™ ax = [ v(a) cos T da
- —o (2-3)

and for the discrete case

I ika o
p(k) = [v()e " dx = [ u(r) cos kA dx

- - (2-4)

It frequently occurs in apectrum carpentiry that an

appropriate moving average scheme is needed to smooth
either the sample estimates r(t) and r(k) of the auto-
correlation functions p(t) and p(k) (Eqs. 2-1 and 2-2),
or to smooth the estimates v(A) of v(\) after the
transformation has been made. For the continuous case,
smoothing in the time domain gives

+o S
v(A) = %;-J DCT)r(T)éj}Idt = %E—J r(t)D(t) cos At dt ,
(2-5)

—a -0
where D(t) = a smoothing function for the estimate
r(t) of p(r) in the time domain. The transformation in
the discrete case gives the following estimates of
v(})

v(A) = %; [1+2 ] r(k) cos Ak] ,
k=1 (2-6)

where 0 < A < n. The period w, the frequency f and the

angular frequency A are related by £ = 1/w = A/2m. Now
E[v(A)] = v(2), [8], and the mean of v(A) is 1/m over
the range of A, as the expected value of all variance
densities over 0 < A < 7 in case of a standardized
process (0,1). For the estimates of variance densities
for cases in which the ordinary frequencies, f, are
used, Eq. 2-6 becomes

g(£) = 2[1 +2 } r(k) cos 2rfk] |,
k=1 (2-7)

with g(f) = the estimates of the variance densities
¥(f). Here, 0 < f < 0.50, f = 1/w, E[g(f)] = y(f), and
the mean of all y(f) values is two over the range from
0 to 0.50 for a standardized process (0,1).

Using Eqs. 2-6 and 2-7 for the estimation of wari-
ance densities, y(f), requires more computer time than
the application of the Fast Fourier Transform, FFT, for
estimating g(f) directly and smoothing these estimated
variance densities in the frequency domain. Both
approaches--the Wiener-Khinchine transformations and
Fast Fourier Transforms--lead to the same results, if
the same smoothing function is used in the frequency
domain (or the corresponding function in the time
domain) and the same resolution (the number of vari-
ance density ordinates) is selected for the estimation
of densities; the only difference is a saving of compu-
ter time by using FFT. If Eq. 2-6 or Eq. 2-7 are used,
with the infinite limit of the sum replaced by a value
k = m, with m determined by some criterion (either
objective or subjective), and if a smoothing function
D(k) is introduced, Eq. 2-7 becomes

~ m

g(£) =2[1+ 2 § D()r(k) cos 2nfk] .
k=1 (2-8)

This is a practical form of the equation for transform-

ing the estimate r(k) of the autocorrelation coeffi-

cients p(k) into the estimates E(f) of the variance
densities y(f). In practice, p(k) are estimated by the
sample values r(k), and their transforms g(f) are



smoothed either in the time domain by LEq. 2-8, or
similarly in the frequency domain by the corresponding
kernel function.

It should be stressed that the following terms:
the moving average scheme, the moving average model,
the smoothing function, the filtering function, the
filter, the window function, and similar terms, are
considered all synonymous for the purposes of this
paper. The term smoothing function is used in this
text.

2-3 Estimation of Variance Densities

The practical use of the continuous spectrum
began in 1948 and 1949, mainly in the work of H. T.

Budenbom and F. W. Tukey, when they initiated the analy-

sis of radar trackings for the Bell Laboratories in the
form of continuous power spectra.
forms of the type of Eqs. 2-1 and 2-2 were used.
Blackman and Tukey [8] suggested. the use of a three-
point smoothing function in the frequency domain to
smooth the computed variance densities, with the sym-
metrical weights: (1/4, 1/2, and 1/4), to produce
smooth and less biased estimates of the variance
density spectrum.

The three smoothing functions that were most com-
monly used in USA during the 1950's and 1960's are
those proposed by Bartlett, Tukey, and Parzen. Smooth-
ing in this investigation is made by Parzen's smoothing
function in the time-lag domain, substituted into

Eq. 2-8. Parzen's smoothing function is:
2 3
= k|® k i m
D(k) =1 '6[EJ + ﬁ[ﬁJ ; for k_<_2
3 (2-9)
=2[1«l‘-] ; for T <k <m
m 2 =
7 fork>m

Smoothing by Eq. 2-9 accomplishes the following
objectives: (1) it is simple, (2) it uses small
computational time, (3) the resolution of distance
between discrete spectral lines in estimating the con-
tinuous spectrum can be kept relatively large, or the
inverse, the number of points at which the spectral
estimates are made on the line 0 < £ < 0.50 can be
relatively small; and (4) the bias and inefficiency of

estimates g(f) of the spectral densities y(f) are
relatively small [9]. The selection of m in this study
is made as m = N/4, and the spacing of the values is
unrelated to the choice of m. It was arbitrarily
selected as Af = 0.05, so that eleven ordinates of

é[f} need to be estimated on the interval
0 < f < 0.50.

2-4 Whitening

The concept of whitening the sample series is
based on the hypothesis of a stochastically dependent
model for a stationary process. The computed residu-
als of the model should then be time independent sto-
chastic components (TISC) or independent identically
distributed random variables (IIDRV). If the hypothe-
sis of the model with its unbiased and most efficient
estimates of parameters is correct, the residuals
should pass the test of independence; the hypothesis of
the dependence structure and/or model, with the cor-
responding estimates, should be accepted. The term

itening usually refers to normal random variables;
however, the concept of whitening does mnot necessarily
include the condition that the probability distribution

Fourier cosine trans-

of residuals must be normal. As long as residuals are
time independent identically distributed random vari-
ables, with moderate skewness coefficients, they may
be considered as white noise, and the series called a
whitened series. The major advantage of the whitening
concept is that the inference technique in spectral
analysis about the hypothesized independent residuals
is simpler than in the case of dependent processes.
The expected variance densities of the whitened pro-
cess are all equal. The case of white noise,Eqs. 2-7

and 2-9 yield E[g(£)] = v(£f) = 2.00. The tolerance
limits for the hypothesis of y(f) = 2.00 for all fre-
quencies are also equal for all f values except for

the two extreme values of ﬁ(f}, namely §(0) and
g(u.so), because of the double sampling variance of

the two estimates g(0) and g(0.50) in comparison with
the variance of all other estimates of intermediate
frequencies.

2-5 Variance Density Functions for the First and
Second-Order Linear Autoregressive Models of
Temporary, Stationary Annual Stochastic Processes

Denoting the time interval of discrete series as
unity (in this study t = 1 year), the expected spec-
tral function of a standardized process (i.e. with
zero mean and unit variance) following the first-
order autoregressive (Markov) model

2,1/2
R Tl AS 2 (2-10)
is found to be:
2
H(E
v - —212)
1-2p cos 2nf + p (2-11)

with y(0) = 2(1+p)/(1-p), v(0.25) = 2(1-92}/[1+02) 3
and Y(0.50) = 2(1-p)/(1+p) .
always y(0) at £ = 0.

The maximum ordinate is

For the second-order autoregressive model, with
both x and ¢ standardized variables (0,1) |,

X, = o X, + o X,

i 17i-1 27i-2+ 0 e, (2-12)
the spectrum function is

2 2
2(1*&2]{1~ul+32-2u2)
YiEh (1-a,) [1+a>+a>+2a,-2a. (1-a ;) cos2nf-4a_cos ~2nf]
ay @) *ay*2a,-2a, (1-a ) cos ,€08
(2-13)

with 02 = (1+a2}(1-af+u§-2a2]/(l-u2J, and the maximum
of y(f) at f = fo determined from cos Zﬂfo = al[l-uz)/

4u2.

2-6 Tolerance Limits of the Spectrum for Time Inde-
pendent Identically Distributed Random Variables

The estimated spectral densities of standardized
normal independent process are chi-square distributed
with a proper number of degrees of freedom. This num-
ber depends on: (1) the length m of the correlogram,

T with k = 1,2,..., m, used in Eq. 2-7 in estimating

the spectral densities, (2) the sample size N, and



(3) the smoothing function upplied. This latter
effect is usually given for any proposed smoothing
function by its author(s), with EDF (effective degrees
of freedom) expressed only as a function of N and m,
for each smoothing scheme. For the smoothing function
of Eq. 2-9, the suggested values [9] for v are:

EDF = 5.7 N/m for normal variables, and EDF = 4 N/m
for non-normal variables; for m = N/4, EDF = 14.8 for
normal variables and EDF = 16 for non-normal variables.

For the selected tolerance level a (say a = 0.05,
or ¢ = 0.10), the tolerance limits are

2 2
2 o
. 2x, /5 (EDF) —— 2"} _y/2 (EDF)
1 EDF 2 EDF (2-14)

2 2
with x l3“‘,2{\.1}{EDF] the value of ¥ for given EDF at the

left tail for the probability a/2 and xf-n/Z(EDF} the
value of x? on the right tail for the probability

(1 - a/2). Because E[x2(EDF)] = EDF, while E[g(£)]=2,
the values xifz(EDF] and x§ - ay2(EDF), divided by EDF
and multiplied by two, produce the necessary scale, so
that the E[x?(EDF)] = E[g(f)] = 2.0. Similarly,

var [xZ(EDF]] = 2 EDF, so that var g(f) = var [ZXZ(EDF)/
EDF] = 8/EDE.

2-7 Tolerance Limits for the Spectrum of a Set of
Spacially Dependent Series of a Region for Time
Independent and Dependent, Identically Distri-
buted Random Variables

For the study of a large number of station series
of the same random variable in a given region, the
following two methods may be used to investigate
whether the observed series or their whitened series
are time independent. One method consists of testing
each series individually to discover whether it is
independent, and then seeing whether the total number
of stations for which the hypothesis of independence
is accepted is greater than a critical tolerance num-
ber. In the opposite case, if the percentage of cases
with the accepted hypothesis is equal to or greater
than the tolerance level (given as the probability of
accepted hypotheses for independent processes), the
observed or whitened series of a region are accepted
as time independent. The other method uses the mean
spectral variance densities. These mean densities are
computed for each discrete frequency for which vari-
ance densities are estimated from all the individual
station spectra of a region. In this paper the esti-
mated variance densities of all n series of a region
and a given variable are averaged. The tolerance
limits for the mean spectrum are then determined,
taking into account the entire set of n series, their
sample sizes, N., and their cross correlation and
autocorrelation” dependence.

In using either of the above two tests for
independence, the relation of all the estimated vari-
ance densities to tolerance limits must be precisely
defined. The approach that all the estimated variance
densities should be confined within the tolerance
limits should be viewed as a conservative approach, or
as a too rigorous a criterion. If variance densities
are estimated at m + 1 points of the spectrum, a
criterion for accepting the independence hypothesis
may be

m; <am+1) , (2-15)

with m; = the number of densities allowed to be out-

side the tolerance limits. The dependence between the

densities g(f) and frequencies (as a result of smooth-
ing by Eq. 2-9 in order to obtain less biased and more
efficient estimates), speaks somewhat against any
density being outside the tolerance limits. However,
assuming that for a given smoothing function the
effective number of degrees of freedom, EDF, of

Eq. 2-14 for the distribution of estimates g(f) has
been well determined, then a test using Eqs. 2-14 and
2-15 for individual series should be performed.

The first method of testing the regional validity
of time independence by the number of series which pass
the test is not attractive, because of high lag-zero
cross correlations between station series. If by pure
chance a station series in the center of a region has
the sample statistics drawn from the tails of their
distribution, a large number of surrounding stations
should also show similar sampling deviations from the
population mean of that statistic. In other words,
the proportion of the number of individually tested
regional station series, which pass the test of inde-
pendence, is not a proper test statistic to use.

The second method, that of testing the averaged
spectra of n station series, requires the determina-
tion of the effective number n  of mutually indepen-

dent station series as being equivalent to n inter-
dependent series; evidently n, <n. The variance of

the estimated mean spectrum of n, mutually independent

series is equivalent to the variance of the estimated
mean spectral densities of all the station series for
n regionally dependent series.

For every statistic there is a different n, value,

because the variance of estimates vary from one statis-
tic to another. As the estimated variance densities,

g(f), are the Fourier transforms of the estimated
autocorrelation coefficients, rk, one can use the

effective number n, of T, as being equivalent to the

Therefore, the problem is
spacially independent

effective number of g(f).
to determine the number of n,

series equivalent to n spacially dependent series.
Because the autocorrelation coefficients for annual
series converge fast from Ty >0 to T = 0, it is

sufficient in general to study the effective number n,
of stations only for r > 0.

In cases the available annual series of size N
are autocorrelated, then a small size Ne <N is the

sample size equivalent to the time independent series
for each statistic. Therefore, n series spacially
dependent, each series of size N also time dependent,
can be replaced by the number n, of space independent
series, each of size N_ of the time independent series.
The variance of r, and correspondingly of g(f), of nN
space-time dependent, observed annual values should be
equal to the variance of I, and correspondingly of

ﬁ(f). of neNe of space-time independent annual values.

To estimate neNe, the Ty values of all series are
needed. Two methods are feasible for the estimation



of T values: (1) To use the lag-zero cross correla-

tion coefficient matrix of all the station series in
each area for a given variable; and (2) To use the

distribution of T, to find its variance, and from this

variance the number neNe'of space-time equivalent inde-

pendent series for each area and each variable.

The second approach by using the distribution of
T of n regional series to determine n, seems simpler

than the first approach by using the cross correlation
matrix of all the series. In using the matrix method,
one must compute n(n - 1)/2 values of the lag-zero
cross correlation coefficients and average them. In
the second approach only the n values of the first

serial correlation coefficients rl need to be esti-

mated for each region. Both approaches are described
herein to show how they should be used, although the
second method is used only in presenting the computa-
tional results and in obtaining the tolerance limits
for the average spectral densities in Chapter IV.

Connelation matrnix approach. The simple average

r, is computed using

1 lsj 2 {2_16]

in which L the r,-value of the j-th station of

1
the sample size Nj. To take into account the differ-

ent sample size, which determines the information con-

tent in the ) j-estimates, a weighted mean ri may be
’
used, with Nj - 1 as the weights, so that
)
N. - )r_ .,
i i=1 ¢ ] 1,]
== - -
1 n
§oOo(N. - 1)
j=1 (2-17)

Similarly, the variances of r j's are computed either
by using the weights Nj - 1 and ri, or by using the

average sample size as N - 1 and 51, in the general

equation

var 51 = %; var ¥, (2-18)
or

VAT ‘T = % var r*l,j i (2-19)

The correlation coefficient pi. between the first
serial correlation coefficients, rlfx} and r1(yJ, of

the two series x and y, are given by [2, page 11]

a3 N(N-z}[rf (x) + ri(y)]
Pij * NI Py |1 ZN+2)  (N+4) (3-20)

in which N = the sample size and Bl ™ the lag-zero

correlation coefficient between the x and y series.

The correlation coefficient Pij is estimated by the

sample value rij obtained 1? replacing pxy by rxy in
Eq. 2-20. The variance of r, is then

) i n n n
var r, = — [.z1 var r rF +:2 .% '_Z cov rl,j rl,il’
n j=1 j=1 i=j+1
(2-21)
which gives
var
- . = ) .22
var T, = (1 + rij(n 1] (2-22)
with
n n
- 2
Ty B mm—— T
ij n( - 1) iZI iil 1 o (2-23)

in which Tij = the estimate of pij of Eq. 2-20. For

var T, = var rlfne. Cg. 2-22 gives
n = n ——
1 +%..(n-1 :
® rljf ) (2-24)

Approach by deteamining the variance of g from
&ty grequency distribution. The variance of r,. esti-
mated in the open-series approach, with the estimated
mean and variance of a normal variable, is [2]

Nﬁ - ENE + 4
var r, = Eigﬁf_jﬁ;;ﬁ" i
o (2-25)
in which N0 = the length of a unique series which will
have the same variance of r, as the n space-time depen-
dent series of a region. From Eq. 2-25 a value No can

be obtained which should always be greater than either
Na, the average size of n series, or N, the size of n

series of equal length,

N, = n Ny (2-26)

with n, = the equivalent number of independent series
in the region, and Ne = the mean sample size of all n
series, for Ne to correspond to independent series,
then

(neNe)3 - 3(neNe)2 + 4

(N[N % - 1]

var r, = 2
4

(2-27)

Given Ne as the effective average length of n series in
an area, then Eq. 2-27 permits the computation of Ny

as the effective number of independent series in the
region.

The value ND = neNe represents the sample size of

a unique independent series for the determination of
tolerance limits for the average spectral variance
densities.

A still simpler way to determine neNe is by using

the Fisher z-transforms of Ty values as

1+ r1

l1-r1

I
z = T In
1 (2-28)

The n values of z give the variance of z by [2]



1
var Z = 3
neNe (2-29)
or
1
T -N var z
. Ny (2-30)

This simple method is used in this paper to determine
the neNe values for the 24 cases (four variables and

six areas), with the assumption that rl's are so small
that the difference between Ne and either Na (average

sample size) or N (individual sample sizes) may be
neglected. In general, an approximation to Ne for the

first-order Markov model is

NG - ri)
e 2
(+7g) (2-31)
For T, = 0.20, Ne = 0.90 N. For very small r1 (say

T < 0.10, Ne 3 Na; for P 0.10, Eq. 2-31 should be
used to find Ne, and then n, can be found from
Eq. 2-30.

Determination of tolerance Limits. The distribu-
tion of individual estimates, ﬁ{f], is chi-square with

EDF = the number of effective degrees of freedom. The
mean values of g(f), determined by

= R

gf) = - 1 & (2-32)

i=1

may be approximated by the normal distribution, when

10

EDF of I ﬁi[f} is at least 30. Then the variance of
the mean of g(f) becomes

var g(f) _ 8

N, EDF . ne

var g(f) =

(2-33)

If m= N/4 is chosen, then EDF = 3.7 x 4.0 = 14.8
when the distribution is close to normal. If the
Parzen's smoothing function, Eq. 2-9, is used then

var g(f) =

.54

e

. (2-34)

with the 95 percent tolerance limits of standardized
normal variables (t + 1.96) given by

B,2f)=v(f) £ ts., (2-35)
or
1.44
(£) = 2.00 + ; (2-36)
31,2 —/Ic

Tolerance limits of Eq. 2-36 should be used in the
analysis of the average spectral graphs in further in-
vestigations only for the central ordinates of esti-

mated g(f), while for their end ordinates of spectral
density graphs the corrections (the larger tolerance
limits) are:

1.44 V7
g, ,(f) = 2.00 + =—— ,
1,2 =— ',’Z

(2-37)

because of a further loss of degrees of freedom in
the estimation of end densities.



Chapter 1l
RESEARCH DATA ASSEMBLY

This chapter refers to the selection of variables
in the study of fluctuations of wet and dry years, and
particularly to the division of the United States
(excluding Alaska and Hawaii) into six areas.

3-1 Selection of Variables

As shown in Introduction, four variables of
annual series are investigated:

(1) Pl' the series of annual precipitation,
inferred by the analysis of data to be consistent (no
apparent systematic errors) and homogeneous (negligi-
ble man-made influences or natural accidental
disruptions);

(2) Ql' the series of annual runoff, selected by
criteria described in papers of the same title [1,2]
as this paper;

(3) Pz. the series of annual precipitation,

inferred to be either inconsistent or nonhomogeneous;
and

(4) Q,, the effective annual precipitation,
obtained from the Ql series by Pl - QZ = Ql + AW, or
Q2 =P - Ql + AW, where AW = the change at the end of

each water year in the total water stored in a river
basin above the gauging station of Q! [1].

Data selected for this study covers the continen-
tal USA except Alaska. Basically all the precipita-
tion and runoff stations of longest record satisfy the
prescribed selection criteria [1]. Sample sizes vary
from N = 35 to N = 150 for annual precipitation P1 and

P2 series, and N = 30 to N = 97 for annual runoff Ql
series and effective precipitation Q2 series. The

criteria used in selecting the P1 and Ql series for
the Western United States in Reference [1] were
extended for the selection of series in the Eastern
United States.

3-2 Selection of Six Investigation Areas
>

The maps of the average annual precipitation, mean
annual lake evaporation and the average annual runoff,
published in the Water Atlas of the United States, by
the Water Information Center, Inc., were used to
deliniate the six areas according to precipitation,
evaporation, and runoff characteristics. The basic
criterion in separating these areas was to have within
each area the approximately similar climatic condi-
tions, though the orographic local differences made it
difficult to carry out this criterion consistently for
each area., Figures 3-1, 3-2, and 3-3 show these six
areas.
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Fig. 3-1. Average Annual Precipitation for the United States Based on 40-year Period. (After U.S. Department'

of Agriculture, "Climates of the United States.')
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Fig. 3-2. Mean Annual Lake Evaporation for the United States. Lines Show Mean Annual Lake (free-water)
Evaporation in Inches Based on Period 1946-1955. (After "U.S. Weather Bureau Technical Paper 37.")
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Fig. 3-3. Average Annual Runoff for the United States. (After U.S. Geological Survey.j Lines Show Average
Annual Runoff in Inches. The 5-, 15-, and 30-in. Runoff Lines have been Omitted in Western United
States to Prevent Crowding of Map Detail.
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3-3 Brief Description of Areas

Area I covers USA from the West Coast to longitude
117°, and from latitude 35° to the Canadian border.
Area II covers the western part of the US, from longi-

tude 117° to longitude 104°, and from Mexico to Canada
(basically the dry areas west of the Rocky Mountains,
the Rocky Mountains, and part of the plateau east of
them). Area III covers the USA between the longitudes
104° and 94° (basically the central part of USA along
the broad valleys of the Mississippi and Missouri
Rivers and some of their major west tributaries).

Area IV covers the Southeast of USA between longitude
94° and the Atlantic Ocean, and the Gulf of Mexico and
latitude 36.5°. Area V covers the north-central part
of USA between longitudes 94° and 85° and between
latitude 36.5° and the Canadian border. Area VI covers
the northeastern part of USA, east of longitude 85°
and north of latitude 36.5°.

The basic characteristics of annual precipitation
(mean, minimum, and maximum) and annual runoff (mini-
mum and maximum) for the six areas given in Tables 3-1
and 3-2,respectively.

Table 3-1. Characteristics of Annual Precipitation

of Six Areas

Mean Annual

Area Precipitation Minimum Maximum
No. in Inches In. Location In. Location
I 23.8 in. 5 Southeast 140 Northwest
IT 14.4 in. 5 Southwest 50 Northwest
III 23.6 in, 15 Northwest 45 Southeast
v 51.1 in. 45 North § 80 North
South
v 34.9 in 25 Northwest 50 South
VI 41.1 in. 30 Northwest 50 North,East
§ South
Table 3-2. Characteristics of Annual Runoff

of Six Areas

hydrologic variables of annual precipitation and
annual runoff are femporary stationary stochastic
phocesses. Temporary stationarnity is conceived of in
this text as stationarity in processes extending only
about 150-200 years both into the past and into the
future from the present. It is not considered valid
for longer periods. By investigating six different
areas of USA, rather than the total USA area, it is
felt that a better insight could be obtained as to
whether differences between the areas can be ascribed
only to the inevitable sampling fluctuations resulting
from the limited sample sizes of the series. Further-
more, it is hoped to demonstrate that the differences
in climate, such as humid, semi-humid, semi-arid and
arid climates, do not significantly affect the basic
conclusions about this temporary stationarity.

The second objective of the study is hopefully to
demonstrate that the annual precipitation process is
an independent, temporarily stationary process, or
very close to it, in the above sense of femporary
stationanity. The division of USA into six areas,
approximately based on the general climate, should
answer the question whether the type of climate influ-
ences the degree of closeness to the independent,
temporarily stationary process. Several other aspects
of hydrologic stochastic processes of annual values
may be investigated by comparing their properties for
stations inside large but adjacent areas.

3-5 Preparation of Data on Tapes

Annual series data for each area and for each of
the variables: the homogeneous precipitation (Pl)'

the runoff (Ql), the nonhomogeneous precipitation
[PZJ, and runoff corrected for carryover {QZ) as the

effective precipitation, were taken from the existing
magnetic tapes at Colorado State University for each
of these variables, and separately for the West and
the East of the United States. The data was first
examined by Special Programs to check whether there
had been any change in the location of any station.
Then all stations were classified into their six geo-
graphical areas, as described in Section 3-3 of this
chapter, and series of four variables were recorded on
six new magnetic tapes, one for each area, with a
sequence of four segments: Pl. Ql’ Pz, Qz on each

tape. The number of annual series in each area for
each variable is given in Table 3-3.

Table 3-3. Number of Stations Series
Area Minimum Maximum for Each Variable and Each Area
No. Inches Location Inches Location
I 1 Central 80 West Coast AREA
II 1 Central 40 West Variable| I II ITI v v VI
I1I 1 Central 20 East
P1 239 380 444 222 231 343
Iv 5 South 40 Northeast
Q1 166 156 85 78 88 175
V' 5 West 20 South
PZ 77 132 204 175 155 176
VI 10 Northwest 40 Northeast
QZ 166 156 85 79 89 173

3-4 Reasons for Using Areas

The first objective of this paper is to investi-
gate whether it can be reasonably inferred that basic

13

Most of the data were updated to the year 1965,
and a few corrections in location were made.



Chapter IV
ANALYSIS OF COMPUTATIONAL RESULTS

The computational results are analyzed in this
Chapter for the average variance density spectra of
investigated four series Pl’ Py Ql’ QZ' and for the

six areas in the United States. The variance densities
for eleven frequencies (0, 0.05, 0.10, ..., 0.45, and
0.50) are computed for each individual series. Then,
the n variance densities for the n areal series, for
each frequency, are averaged to produce the 24 average
variance. density spectra (four variables multiplied by
six areas).

Before the average spectra are analyzed for each
of the four variables (Pl, PZ’ Ql’ Qz}, and in turn

for each of the six areas (Nos. I, II, III, IV, V, VI),
the auto-correlation and cross-correlation properties
of these 24 cases are presented and discussed. This
was considered necessary for determining the product

(neNe) of the number of equivalent, spacially in-

dependent stations {ne], multiplied by the effective
time independent sample size (NeJ. for each area and
in turn for each variable. The values n, and Ne then

serve for the various computations but particularly
of tolerance limits for the average variance density
spectra.

4-1 Determination of the Effective Numbers of n,

and Ne

Frequency histograms of the Fisher Z
of the estimated first serial correlation coefficient,
r,, are given in Fig. 4-1. For each of the four

trans forms
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variables P

Frequency distribution histograms of the first serial correlation coefficients, T of the four

1 PZ’ Ql, QZ (the four graphs), and in turn a separate frequency histogram for each of

the six areas of the United States (I, II, III, IV, V, VI).



variables Pl' P Ql QZ’ there are six histograms,

one for each area. The r,-values are first estimated,

then transformed into the Fisher zl-variable values
by using Eq. 2-28.

Two approaches can be used in practice to de-
termine the standard deviations of frequency distri-

butions of the zl-variables:

(1) A direct computation of var z_ from the n

1

values of each variable: P Pz, Ql' Q. and in turn

1’
This approach is used in
this study to compute s, = vvar 2 -

(2) An indirect computation by the graphical
estimation, in plotting the frequency curves of z,

for each of the six areas.

in Cartesian-probability scales, in drawing by a
visual inspection through the plotted points, the
straight lines and in finding the standard deviation

5,. This approach is not used in this study, however.

Since the z,-variables are normally distributed, the

1 :
straight line fits to the plotted frequency distri-
bution points (usually to the points between 10% and
90% of frequencies) enable the estimation of the

standard deviations S, of the zl-transforms for the

24 variables. For the probabilities on the straight
lines of 84.13% and 15.87%, the differences between

their z, values give 252. with var z, = s2

1 1 z’

By using Eq. 2-29 , n N, is obtained for a given

var z,.
sample size of n series, if Ty is very small, say

r < 0.10), then I = (neNe)/Na. g 0.10, Eq.
2-31 , and then n_ is computed.

Table 4-1 presents the results for the four variables
(Pl, PZ' Ql, QZ} and in turn for each of the six areas.

For Ne = Na (this is the case for the average

For r
gives Ne for N = N&

These estimates are then used to determine the tolerance

limits of z;-

4-2 Tolerance Limits for the il-Transforms of the

Average First Serial Correlation Coefficients

With the rl-values transformed into the Fisher
z1~va1ues, with 2y normally distributed, the expected
value of El and the upper and lower tolerance limits

are determined for the estimates of the El—variablcs.

The expected value of El is

= 1
EF, = - ; (4-1)
1 neNe
with the expected value of El resulting as
1+ ET
EZ, = 7 In ——L (4-2)
1- Erl

and the upper and lower tolerance limits for the 95%
probability level computed by

_ 1.96 sz
UTLZ = Ezl + l'l_— {4-3]
e
and
i 1.96 s,
LTLz = Ezl im— (4-4)

4-3 Results from the Study of the Fisher z,-

Fisher z.-transform of the

genety and inconsistency (systematic errors).
tend to increase their r

pendent time series.
auto-correlation, with the z,-values ranging between

0.0814 (Area VI of Qz) to 0.2545 (Area V of Ql)' are:

The four values, Efl, EEI, UTL,, and LTL_, for each
of the four variables (P,, PZ’ Ql' Qz} and each of the
six areas, are given in Table 4-1.

1
Transforms of the Average First Serial
Coefficients, fl

The basic results drawn from the numbers in Table
4-1 are presented in Fig. 4-2. The values of Z, (the

1 first serial cor-

relation coefficient, rl) for the four variables (Pl,
P2' Q. Q,) and for the six areas of the United States,
are compared with the upper tolerance limits for il'
given as UTLz , for the 95% tolerance probability

level. For these 24 cases the positive values of the

tolerance intervals are shaded in order to emphasize
the differences between the computed 2y and UTL;-values.

Both the homogeneous annual precipitation series
[Pl) and the non-homogeneous annual precipitation

series (Pz) show the z, -values to be mostly above the

1

upper tolerance limits of il , with four out of 12
values either close to these limits (two values of Pl]

or below these limits (two values of Pz).

Both the annual runoff series (Ql) and the ef-
fective annual precipitation series (QZ],obtained di-
rectly from the Ql—series, have in all the 12 cases

(two times six areas) the El-values located signifi-

cantly above the upper tolerance limits, UTLz .

The P,- and Pz-series are close to be independent

1

time processes, with the maximum El being 0.0832 for
Area I of the P
values of 51 being 0.0734 and 0.0772 for Areas I and

l-variable, and the next two highest

11 of the Pz-variable. The positive values of 51 may

be variously explained. Among the most important

factors are:

(1) Annual values are obtained by cutting the
precipitation process at a given date, with the daily
precipitation of the previous and the succeeding days
to that date being time dependent process.

(2) Inconsistency and non-homogeneity in data may
be unavoidable, and as such imbedded in the annual
series. Various changes in observations (definition
of trace values of precipitation, changes in the verti-
cal and horizontal gauge positions,in instruments, in
the methods of determining the catch of precipitation,
in gauge surroundings, etc.) produce these non-homo-
They
1 values.

The QI' and Qz-series are, on the average, de-

The basic reasons for the positive

(1) Changes in water storage capacities in river

basins from year to year, so that evaporation,



Table 4-1. Properties of the Average First Serial Cross-Correlation Coefficient, ;1’ and its transform, z
for Four Variables [Pl, PZ' Ql’ Q2] and Six Areas of USA

1°*

AREA WITHIN USA
Variable Parameter
| [1 I11 Iv Vv VI

n 239 380 444 222 231 345
N, 58.1 54.4 60.9 62.7 60.8 57.5
il 0.0832 0.0518 0.0475 0.0135 0.0138 0.0504
z) 0.0834 0.0519 0.0475 0.0135 0.0138 0.0504
nNe 285.8 494.2 467.6 437.0 388.5 508.5

Pl 5, 0.05946 0.04512 0.04640 0.04800 0.05093 0.04448
N, 4.92 9.08 7.68 6.97 6.39 8.84
Er, -0.00351 -0.00202 -0.00213 -0.00229 -0.00257 -0.00197
Bz, -0.00350 -0.00202 -0.00214 -0.00229 -0.00257 -0.00197
UTL, +0.01825 +0.00772 +0.00970 +0.01121 +0.,01305 +0.00790
LTL, -0.02525 -0.01176 -0.01398 -0.01579 -0.01819 -0.01183
n 77 132 204 175 155 176
Ne 56.4 52.3 59.1 59.9 61.2 63.4
EI 0.0733 0.0771 0.0567 0.0372 -0.0054 -0.0193
El 0.0734 0.0772 0.0568 0.0372 -0.0054 -0.0193
neN, 227.6 470.0 352.5 364.6 377.3 514.2

PZ S, 0.06673 0.04627 0.05349 0.05259 0.05169 0.04423
ng 4.04 8.99 5.96 6.09 6.16 8.11
ET, -0.00439 -0.00213 -0.00284 -0.00274 -0.00265 -0.00194
Eil -0.00439 -0.00213 -0.00284 -0.00274 -0.00265 -0.00194
UTL, +0.02798 +0.00796 +0.01475 +0.01418 +0.01380 +0.00874
LTL, -0.03677 -0.01221 -0.02043 -0.01867 -0.01910 -0.01263
n 166 156 85 78 88 175
No 40.4 41.8 38.0 37.5 39.5 43.4
51 0.1686 0.1741 0.2178 0.1852 0.2491 0.1228
il 0.1702 0.1759 0.2214 0.1874 0.2545 0.1234
n N, 130.9 247.1 214.7 146.1 133.1 183.1

ul By 0.08843 0.06401 0.06873 0.08361 0.08768 0.07452
n, 3.24 5.91 5.65 3.89 3.37 4.22
Eil -0.00764 -0.00405 -0.00466 -0.00684 -0.00751 -0.00546
Ei1 -0.00764 -0.00405 -0.00466 -0.00684 -0.00751 -0.00546
UTL, +0.04586 +0.01718 +0.01919 +0.03528 +0.04348 +0.02915
UTL, -0.06113 -0.02528 -0.02850 -0.04897 -0.05851 -0.04007
n 166 156 85 79 89 173
N, 36.1 38.0 33.6 33.1 35.3 39.2
El 0.1672 0.1529 0.2137 0.1917 0.2446 0.0812
51 0.1688 0.1541 0.2171 0.1941 0.2497 0.0814
n N, 108.4 214.3 182.1 126.8 119.3 173.6

Qz s, 0.09738 0.06879 0.07472 0.08988 0.09273 0.07656
n, 3.00 5.64 5.42 3.83 3.38 4.43
Eil -0.00923 -0.00467 -0.00549 -0.00789 -0.00838 -0.00576
551 -0.00923 -0.00467 -0.00549 -0.00789 -0.00838 -0.00576
UTL +0.05440 +0.01924 +0.02153 +0.03811 +0.04539 +0.02811
LTL, -0.07285 -0.02857 -0.03251 -0,05388 -0.06215 -0.03963
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evapotranspiration and runoff process of any year
depend on the history of water storage and depletion
in previous years.

(2) Same factors, similar as for the precipi-
tation, namely the effect of the year beginning date
cutting a continuous dependent process , and of in-
consistency and non-homogeneity (man-made changes
mostly) .

4-4 Computation of Tolerance Limits for the Average
Regional Variance Densities for the Time In-
dependent Normal Processes.

By using the n_-values taken from Table 4-1, the
tolerance limits, g, z(f], of the average spectral
»
2-36 for the

spectral densities Nos. 2 through 10 (central ordinates
of the spectra), and by Eq. 2-37 for the densities
Nos. 1 and 11 (the end ordinates of the spectra).
Equations 2-36 and 2-37 are applicable under the
following conditions:

densities, g(f), are computed by Eq.

(1) The g(f)-values are normally distributed
around Eg(f) = 2.00.

(2) The estimates of the sampling variance of
2(f), by using the expression: var g = 8/EDF, with
EDF = the effective number of degrees of freedom
determined by the approximate Parzen's approach in
using m = N/4 of the estimated correlogram rk-values

in the computation of the g(f)-values, are unbiased
and sufficiently efficient.

(3) That Eq. 2-37 is a good approximation for
the estimates of the end spectral densities.

Since n, varies between 3.00 (Qz-variable, Area I)
and 9.08 [Pl-variable, Area II) in Table 4-1, and
since EDF = 14.8 for the Parzen's smoothing function
of estimates of spectral densities, then (EDF ne) is
between 44.4 and 135. Therefore, the normal distri-

bution is applicable for the distribution of g(f),
and for determining its tolerance limits at the 95
percent probability level.



Tuble 4-2. Tolerance Limits for the Averages of the Estimated Spectral Densities, with LITL2 10 and LTLz 10°
the Upper and Lower Limits for Central Ordinates, and UTL1 11 and LT]..l 1 the Upper and Lower
Limits for the End Ordinates ’ ,
AREA WITHIN USA
Variable Parameter
[ I I11 Iv v VI
U'I']..z_10 2.649 2.478 2.520 2.545 2.570 2.484
Pl LTLz_10 1.351 1.522 1.480 1.455 1.430 1.516
UTLl 1 2.918 2.676 2.735 2T 2.805 2.685
I..TL1 1 1.082 1.324 1.265 1.229 1.195 1:315
UTLZ-lﬂ 2.716 2.480 2.590 2.583 2.580 2.506
P LTLZ-ID 1.284 1.520 1.410 1.417 1.420 1.494
2 UTL1 11 3,013 2.679 2.834 2.825 2.820 2735
LTL1 11 0.987 1,321 1.166 1.175 1.180 1.285
UTLZ_10 2,800 2.592 2:606 2.730 2.784 2.701
LTLZ-IU 1.200 1.408 1.394 1.270 1.216 1.299
0l UTL1 1 3.131 2.838 2.857 3.032 3.109 2,991
LTL1 1 0.869 1.162 1.143 0.968 0.891 1.009
UTLZ—]G 2.831 2.606 2.619 2.736 2.783 2.684
LTL 1.169 1.394 1.381 1.264 1.217 1.316
92 2-10
UTLl 11 3.176 2.857 2.875 3.040 3.107 2.967
LTL1 11 0.824 1.143 1.125 0.960 0.893 1.033
»
Table 4-2 presents the upper and lower tolerance Pl and PZ’ and for each of the six areas, are con-

limits at the 95 percent probability level for the

average value g(f), of the estimated spectral densi-

ties, g(f), for each f. The LITI..Z_10 and LTLZ-IU and

the limits of the estimated central spectral densities
(namely the ordinates Nos. 2, 3, ..., 10), while

UTLI,II and l..'I'L]”11 are the limits for the end ordi-

nates Nos. 1 and 11.

Figure 4-3 through 4-6 give the averages of the
estimated spectral densities for the four variables:
Pl' Py Q) Q, ., and in turn for each of them of the
six areas of the United States, as the left graphs
of figures, respectively. Each graph contains the
tolerance limits at the 95 percent probability level,
obtained by Eqs. 2-36 and 2-37. For the Q,- and Q-

variables, the curves of the fitted autoregressive
models are also plotted, either as the first-order
model, AR(1), of Eq. 2-10, or as both AR(1) and the
second-order model, AR(2), of Eq. 2-12. Simultane-
ously, the right graphs of Figs. 4-3 through 4-6 give
the corresponding correlograms for up to k = 7, for
each of the 24 spectral graphs given on the left side
of these four figures.

4-5 Results from the Study of the Average Spectra

The spectra of Figs. 4-3 and 4-4 clearly show
that nearly all the g(f)-values,as the averages of n
estimated g(f)-values, from the n station series of

fined within the tolerance limits. No spectrum,
except that of Pz for Area II, has density values out-

side the tolérance limits. It can be concluded from
this spectral analysis that the annual homogeneous pre-
cipitation series, Pl’ and even the annual-nonhomo-

geneous series, Pz, are independent time series, or at
least very close to be independent.

In the analysis of 51, only the ryestimates of
the n stations for each area and each variable were

used, while the g(f) values are obtained from the N/4
serial correlation coefficients, L Giving a proper

emphasis on the spectral analysis, and taking into
account the fact that the tolerance limits are wider
for the end ordinates of estimated spectra than for
the central ordinates, the annual precipitation series
may be safely considered as an independent, stationary
stochastic process. This is valid at least for the
periods of time equal to the lengths of historic
samples. No evidence exists in all the spectra of any
periodicity, either on the frequency of the sunspot
cycle of about 11.3 years, or its double cycle of 22.6
years, or any other cycle. It is evident that neither
the inconsistency (nearly always present in a small
degree in annual precipitation series) nor the non-
homogeneity, nor the year end dependence of precipi-
tation process, create a sufficient dependence in
annual precipitation series to question the general
conclusion of the series independence and its stocha-
stic stationarity.



Coefficient of Determination, Rz, for the Relationships of the Estimated First Serial Correlation

Table 4-3.
Coefficient, Ty, and the Estimates of Mean, X, Standard Deviation, Sy Coefficient of Variation, i
C,» as well as Relationships Between these Three Estimates I
R2'- VALUES FOR AREA
Variable Relationship

Vs = versus | I1 111 v '} VI
T, vs X 0.0798 0.0020 0.0105 0.0191 0.0839 0.0236
r, vs i,sx 0.1132 0.0624 0.0145 0.2356 0.0840 0.0350

Pl T, Vs :l-t,(l‘Ilr 0.1246 0.0352 0.0168 0.2396 0.0839 0.0352
X Vs Sy 0.7496 0.4693 0.7588 0.4012 0.7100 0.3661
X Vs C‘Ir 0.2404 0.1271 0.0628 0.0187 0.0833 0.0520
T, vs X 0.1618 0.0001 0.0007 0.0091 0.0489 0.0002
T, Vs i,sx 0.1686 0.0086 0.0150 0.0946 0.1676 0.0614

P2 T vs i,Cv 0.1699 0.0184 0.0184 0.0897 0.1675 0.0633
X vs Sy 0.8301 0.6458 0.7524 0.3459 0.6697 0.3959
X vs Cv 0.3379 0.2071 r. 1660 0.0008 0.0606 0.0470
T, Vs X 0.0068 0.0000 0.0002 0.0053 0.0003 0.0052
T, vs i,sx 0.0276 0.0184 0.0128 0.0215 0.0006 0.0055

Ql r, vs x,C, 0.0754 0.0309 0.0694 0.0091 0.3335 0.0155 .
X vs s, 0.5965 0.6219 0.7284 0.7218 0.6527 0.6986
X vs CV 0.0270 0.0400 0.1622 0.0000 0.0176 0.2233 .
r, Vs X 0.0051 0.0000 0.0018 0.0040 0.0000 0.0058 _
Ty Vs i,sx 0.0250 0.0185 0.0061 0.0131 0.0154 0.0059 |

Q2 ) Vs X,C, 0.1679 0.0838 0.0240 0.0042 0.3008 0.0322
X vs sx 0.6120 0.6212 0.7493 0.7236 0.6475 0.6977
X vsC 0.0739 0.0406 0.1850 0.0000 0.0276 0.0285

The spectra of Figs. 4-5 and 4-6 clearly show
that they cross the tolerance limits of independent
time series for nearly all the areas, with their

average spectral density values, g(f), obtained by

averaging the n estimated é{f)-values for these n
stations of the Ql- and Qz-variables. These crossings

exist for most of the six areas. The spectra of g(f)
lead to the conclusion that the two series of annual
runoff and annual effective precipitation are the
ned noise series (with the averages of estimated

densities decreasing with an increase of the frequency).

In most cases, the fits of the corresponding first-
order autoregressive dependence model , AR(1l), or in
some cases also of the second-order model, AR(2), show
to be the attractive mathematical models for the
population processes. The correlograms smoothed by
the Parzen function produce also the very smooth
spectra of the red noise type, as opposed to the white
noise type of spectra for the annual precipitation
series.

For all practical purposes, the annual runoff
series, as well as the effective annual precipitation
(precipitation minus evaporation) series are station-
ary but dependent stochastic processes. At least,
they can be considered as temponary stationary
for the sample sizes of available data. These Ql-
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and Q,-series do not show any significant periodicity

of the sunspot cycle (11.3 years), or its double
cycle (22.6 years), or any other cycle.

4-6 Relationships Among the Estimates of Parameters
of Four Variables for Six Areas

Table 4-3 gives the coefficient of determination

{RZ), either for the simple correlation (for two esti-
mates of parameters and linear simple correlation), or
for the multiple correlation (for three estimates of
parameters and linear multiple correlation). First,
the estimates of the first serial correlation coef-
ficient, 0 for each series Pl' Pz, Ql' QZ, and for

each area, are linearly correlated with x (the mean of
the historic series), then with x and S, {sx = the

sFandgrd deviation of historic series), and finally
with x and C“Ir [C‘Ir = the coefficient of variation of

historic series). The Rz-values are given in Table
4-3 in the first three rows for each of the four
variables {Pl’ Pz' Ql’ Qz]. Then, the estimates of

the mean (X) are correlated with the estimates of the

standard deviation Sy and then with Cv' and R2 are

given in the forth and fifth rows of each variable in
Table 4-3.
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Figure 4-3. Average Spectra (The Full Lines of the Left Graphs) with the 95% Tolerance Limits (The Dashed

Lines of the Left Graphs), and the Average Correlograms (The Right Graphs), for the Six Areas
(1, 2, 3, 4, 5, 6) of the United States for the n-Series in Each Area of the Annual Homogeneous

1

P.-Precipitation Series.

First Part of Fig. 4-3. Areas 1, 2, 3.
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Figure 4-3. Continued. Second Part of Fig. 4-3, Areas 4, 5, 6.
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Figure 4-4. Average Spectra (The Full Lines of the Left Graphs), with the 95% Tolerance Limits (The Light
Dashed Lines of the Left Graphs), the Fitted First-Order, AR(1), Autoregressive Model, (The
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Non-Homogeneous Pz-Frecipitation Series.

First Part of Fig. 4-4, Areas 1, 2, 3.
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Figure 4-4. Continued. Second Part of Fig. 4-4, Areas 4, 5, 6.

23



Q, AREA |

~ T,
g (f) k
4 0.3
Q.21
o.l
0 X
-0.1
k
0 1 [ L 1 1 1 1 = 1 LY, _02 1 1 1 1 L L J
0 1.0 2.0 3.0 4.0 | 2 3 4 5 6 7
N
1 1 L A1 1 IJ

| 2 3 4 5 6 T
v_
f k
o 1 1 1 1 L o 1 1 1 - _0 2 1 1 1 1 1 1 ]
o} 1.0 2.0 3.0 4.0 5.0 0O I 2 3 4 5 6 7
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and the Average Correlograms (The Right Graphs for the Six Areas (1, 2, 3, 4, 5, 6) of the United
States for the n-Series in Each Area of the Annual Ql-Runoff Series.

First Part of Fig. 4-5, Areas 1, 2, 3.
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and the Average Correlograms (The Right Graphs for the Six Areas (1, 2, 3, 4, 5, 6) of the United
States for the n-Series in Each Area of the Annual QZ—Effective Precipitation Series.

First Part of Fig. 4-6, Areas 1, 2, 3.
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The relationships of r, versus X, OT T, Versus x

1

and S.» OT T; Versus x and Cv, show the R2~va1ues (or

1
the explained variance by the linear correlation) to
range between zero and 24% for Pl’ between zero and

17% for P2' between zero and 8% (except one value of
33%) for Q;, and between zero and 8% (except one value
of 17% and another of 30%) for QZ' in each of four
cases (Pl, PZ’ Ql, QZJ, for a total of 18 values of R%

The only significant correlation found is between
x and s, (the estimates of the mean and standard

deviation are correlated), because whenever X is large,
also S, is large, or the opposite. However, when x is

correlated with Cv = sx/i, the Rz-values are much

smaller then those for S

The Rz-values can not be considered as signifi-

cant, except for the x versus S, relationships. The

estimates of the first serial correlation coefficient,
rl, may be considered as independent of the estimates
of the mean, x, the standard deviation, Sy and the

coefficient of variation, Cv‘ However, the relation-

ships between the estimates X and s, are very signi-

cant. This conclusion is supported by many compu-
tations of the past.

4-7 A Retrospective View at the Reliability of
Results

The Parzen smoothing function has a bias which
depends upon the second derivative of the actual
spectrum. This derivative is very small in a region
where the spectrum is nearly a straight line and very
large near a sharp peak. Since the spectral estimates
of the series of annual precipitation are serially
correlated only to a very small degree (close to zero),
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these estimates represent the spectra which are likely
to be close to a horizontal line. Thus, the Parzen
smoothing function has a small bias most of the time.
Even for the dependence in the annual runoff series

of the order of r, = 0.10 - 0.20, the bias is small.

The Parzen smoothing function
in this study since it yields
spectral estimates.

is choosen for the use
no negative values of

It is generally known (particularly for the
first-order autoregressive processes [10]) that the
increase of the correlogram truncation value m in
computing the spectral densities will increase the
variance of the estimates and decrease the number of
degrees of freedom of their distribution. It results
in a wider tolerance interval for the estimates, or
a loss of confidence in the estimates. Furthermore,
as it is generally known, an increase in the cor-
relogram truncation value m will decrease the bias of
the estimate. Most of the time, and for a single
spectral estimate, the truncation value m is chosen as
an average value for which, hopefully, neither the
tolerance interval nor the bias are too large. For
the purpose of the analysis in this paper, the bias
in the spectral estimates was kept to a minimum. How-
ever, the variance of the estimates is large, but this
is not considered important for the major assumption,
namely that each of the n spectral estimates for the n
area station series are considered as estimates of the
same spectral density of a given frequency. Thus, by
combining the n estimates into the average estimate,

g(f), the variance of this average estimate is greatly
reduced (especially for the large number of station
series of n = 200-400, with the equivalent n, 3-9

for the space independent series). To reduce the bias
in the estimates, the truncation value m is taken as
high as feasible without jeopardizing the covariance
estimates. The truncation value m is taken as one
fourth (1/4) of the sample size, N. To be consistent
from sample to sample, this ratio is kept constant for
all the series, although the absolute truncation value
m changes from sample to sample depending upon the
sample size.



Chapter V
CONCLUSIONS

The analysis of a large number of station time
series of annual precipitation, annual runoff, and
annual effective precipitation, leads to these basic
conclusions:

(1) For all practical purposes, the method of
spectral analysis shows that the annual precipitation
series in the United States are time independent,
stationary stochastic processes; at least, they are
temponanily stationary processes for the periods of
time of the order of lengths of the available historic
series.

(2) The annual runoff series, and from them
derived annual effective precipitation series (annual
precipitation minus annual evaporation and annual
evapotranspiration) in the United States, studied by
the spectral analysis, are time dependent, stationary
stochastic processes; at least, they are femporarily
stationary processes for the periods of time of the
order of lengths of the available historic series.

(3) The order of the magnitude of the average
first serial correlation coefficient for the annual
runoff series for many stations of large areas is
somewhere between 0.10 and 0.20-

(4) The major factor responsible for the time
dependence of annual series of runoff and effegtive
precipitation is the change from year to year in the

water volume stored in river basins.

(5) No significant spectral densities are found
for any periodicity, particularly for the sunspot
cycle of 11.3 years or its double value of 22.6 years,
in annual series either of precipitation or runoff.

(6) It is safe to project the expectations of
immediate future, say for the future lengths of times
at least equal to the lengths of historic series of
precipitation or runoff, that the expected future
series of annual precipitation will be very close to
independent, stationary stochastic processes, and those
of annual runoff very close to dependent, stationary
stochastic processes.

(7) For practical purposes, the simple first-
order or second-order autoregressive dependence models
seem to be sufficiently accurate mathematical des-
cription for the annual runoff series.

(8) By using a very large number of annual time
series all over the United States, the time-space
study of these processes for data of a relatively
short periods of about 30-90 years for various time
series, should compensate in some degree for the lack
of very long, instrumentally obtained data on precipi-
tation and runoff. What is not available in time, it
may be somewhat compensated with the information in
space, in order to project the near future with a
sufficient reliability.
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