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ABSTRACT 

The spectral analysis is applied to annual series of precipitation and runoff. The precipitation series 
are divided in homogeneous P1-precipitation (no significant changes occured in gauge positions, or no significant 

inconsistency in data), and non-homogeneous P2-precipitation (changes occurred in gauge positions, with sys­

tematic errors or inconsistency). Runoff series are either the observed values as the Q
1
-series, or they are 

reduced to the effective precipitation as the Q2-series (precipitation minus evaporation, determined by changing 

the annual values for the annual difference in water stored in river basins). Data of annual precipitation and 
annual runoff of a large number of gauging stations in the United States are used, in the study, dividing them 
into six areas. 

The techniques of spectral analysis used in the study are described in a condensed form. Average spectra 
are estimated for each of the four variables (P1, P2, Q1, Q

2
) and in turn for each of six areas, with the proper 

tolerance limits, for the 95 percent probability level, drawn around the expected values of average spectral 
densities of independent series. 

Conclusions drawn are that the annual precipitation series are very close to independent time series. They 
are stationary series, at least temporary stationary for the length of time of the order of available series 
lengths of 50-150 years. Annual runoff and annual effective precipitation series are dependent series (witn the 
average first serial correlation coefficient of the order of 0.10-0.20) . They are stationary series, at least 
temporary stationary for the order of time length of 50-150 years. The first- and the second-order autoregressive 
models of series dependence seem sufficiently accurate for the use in practical problems. 

PREFACE 

The contemporaneous scientific and professional literature is full at present of various claims for the on­
going climatic changes . Some of their authors forecast the eventual forthcoming of the new ice age (therefore , 
they continue to speak about the present-day climate as the interglacial climate). Others claim that a warming 
trend is at hand due to the man's release both of the heat in using the various sources of energy, and, through 
the burning of focil fuels, also of the carbon dioxide with its green-house effect of heating the lower atmo­
sphere. The concept of the increased carbon dioxide and the resulting warming effects is a sound approach in the 
analysis of man's influence on the earth's environments. Three factors, however, should be taken into account: 
(1) The tremendous potential of oceans to absorb the additional quantities of carbon dioxide; (2) The increase 
of production of the total green mass of modern agriculture in feeding the continuously increased population; 
and (3) The need for some heating on t he earth for the purpose of compensating some expected, but relatively 
small, cooling in the Northern Hemisphere of the Earth, because of the future changes in distribution of solar 
radiation over the Earth {Milankovich' s phenomena of long-range, almost-periodic fluctuations in solar energy 
distribution over the earth). Likely, the effects of the artificial heat and the carbon dioxide releases, plus 
the other man-made effects on atmospheric composition and its transparency for radiation and irradiation waves, 
are the most attractive short- range, middle-range and long-range objectives of monitoring changes and forecast­
ing the future climatologic effect. 

The practical water resources problems impose an interest for the immediate future, say for the next 100-
200 years. This paper approaches the fluctuations of wet and dry years from the point of view what can be ex­
tracted from the best data of the near past, with the high probability that the future data will show, in the 
limits of the sampling variation, the same or very close to the same characteristics of climatic and hydrologic 
time processes as they were for the last 100-200 years. Some recent studies of dendrochronology may extend the 
past instrumental data up to several more centuries, but with the increased errors . 

This study leads to the conclusion of an unusually high "stability" of properties of major processes , 
namely the stability in the fluctuations of wet and dry years of precipitation and runoff. Because the proofs 
of an approximate stability of phenomena, and the projection that the stability will likely continue for some 
time to come, are not as glamorous conclusions as the projection of an "ice age" or "heating up" of many Earth ' s 
environments. The writer hopes that the conclusions drawn in this study may give some confort to those in 
practical fields of endeavor, who plan systems and make decisions, drawn on the conclusions from the best data of 
the past, assuming that the near future will be similar to the past. Those who doubt this approach are invited 
to place themsel ves at the year 1890 (with some instrumentally obtained data of about 85 years long, available 
at that time), and project the behavior of those phenomena for the period 1890-1975. How surprised they would be 
at the accuracy of their projections , based on the temporary stationarity of annual precipitation and annual 
runoff data. 

Vujica Yevjevich 
August 1977 Professor of Civil Engineering and 
Fort Collins , Colorado Professor- in-Charge of Hydrology and Water Resources Program 
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Chapter I 
INTRODUCTION 

Investigations of wet and dry years of precipita­
tion, runoff, and other basic hydrologic phenomena are 
as old as the earliest human water resource activities. 
Even the writers of the Bible incorporated statements 
on these fluctuations by referring symbolically to the 
seven wet and seven dry years. These continuous inves­
tigations have paralleled similar inquiries in geo­
physics on fluctuations of annual series of climatic 
variables, particularly temperature. From reliable 
records of measured values of certain hydrologic 
phenomena, inferences have been drawn in this paper 
regarding fluctuations of wet and dry years, using 
variance spectrum analysis . It is the purpose of this 
introduction to put these results in perspective. The 
study of fluctuations of wet and dry years is con­
ceived i n this text as being equivalent to the inves­
tigation of fluctuations of annual series of the most 
important hydrologic variables, here chosen to be pre­
cipitation and runoff. 

1- 1 Previous Papers of the Same General Title 

Hydrology Paper No. 1, July 1963, under the title 
"Fluctuations of Wet and. Dry Years" and the subtitle 
"Research Data Assembly and Mathematical Models" [1], 
deal t with the selection of samples of data, general 
mathematical models of physical processes which pro­
duce the tille dependence in annual hydrol ogic time 
series , the compilation of sample data, discussion of 
problems related to errors and nonhomogeneity in data, 
and gave an appendix of data of annual series in modu­
lar coefficients of 140 selected runoff gauging sta­
tions from around the world. 

Hydrology Paper No. 4, June 1964, with tha same 
title as Paper No. 1 and the subtitle "Allalysis by 
Serial Correlations" [2), dealt with annual precipita­
tion and runoff series analyzed by the method of 
serial correlation or the autocorrelation technique. 
The research data consisted of the six sets of annual 
time series: (1) A set of 140 world-wide series of 
~ual runoff (Q1-series) ; (2) The same set of these 

140 series but with the estimated annual effective 
precipitation (Q2-series) defined as the annual pre-

cipitation lllinus the annual evaporation, and computed 
by adding to or subtracting from the annual runoff the 
annual change in the total water stored in the river 
basin at the end of each water year; (3) A set of 
annual runoff series (Q1-series) of 446 river gauging 

stations i n western North America;· (4) The same set 
of 446 series but with the estimated annual effective 
precipitation (Q2-series) defined by the same method 

as described under (2); (5) A set of annual precipi­
tation series of 1141 gauging stations (P

1
-series) in 

the same region of western North America as for the 
set of runoff series, with these series considered 
more or less homogeneous (not affected by man's acti­
vities) and/or consistent (not having significant 
systetaatic errors in the form of trends and jumps, 
introduced by methods of measuring precipitation 
and/or t he change in the surroundi ngs of gauges, which 
would affect the instrument's catch of precipitation); 
and (6) A set of 475 annual precipitation series 
(P

2
-series) in western North America, which series 

have been inferred to be either nonhomogeneous 
(especially through the ~anges i n station location 
and/or elevation during the time of observations) or 

1 

inconsistent (produced by the effects of changing 
environment around the gauge sites during the observa­
tional period) . 

The analysis presented in Hydrology Paper No. 4 
[2] led to the following basic conclusions: 

(1) The hydrologic phenomenon of contemporane­
ously observed precipitation by instruments, particu­
larl y in the form of the total annual precipitation, is 
an excellent measure of eventual climatic changes on 
the scale of decades . The results show that this 
variable is approximately a time independent and sta­
tionary stochastic process for a period of the most 
reliable data. The time dependence, measured by the 
mean first serial correlation coefficient of annual 
precipitation (P1-series), is of the order of 

rl = 0.028 as the average for the 1141 stations for the 

period of simultaneous observations of 30 years (1931-
1960). For all years of observations available at all 
stations of P1-series, with the average series length 

of 54 years, the mean value is rl • 0.055. These 

values imply that only the portions of 0.0282 and 

0.0552 (or 0.079\ and 0.305\) of the unit variances of 
standardized annual precipitation (P1-series) are 

explained (or affected) by the previous year(s). In 
other words, only 0.08\ and 0.30\ of the total varia­
tion of annual P

1
-precipitation in any year is 

explained, on the average, by the annual precipitation 
which has occurred in the previous year . This conclu­
sion results from using both the average series lengths 
of 30 and 54 years. For all practical purposes, the 
annual precipitation (P1-series) can be considered an 

i ndependent time process for time spans of many decades. 

(2) The 475 annual series of precipitation (P2-

series), inferred to be nonhomogeneous and/or inconsis­

tent, show the rl values to be somewhat larger than for 

the homogeneous and/or consistent annual precipitation 
(P1-series), namely 0.053 for the 30-year period (1931-

1960) and 0 .071 for the average series l ength of 57 
for all t he available observations. Any inconsistency 
and nonhomogeneity, such as positive and negative 
jumps in the series mean, or linear and nonlinear 
trends if introduced into an independent or dependent 
time series will , on the average, increase the values 

of r 1 . Differences between the averages, r1 for 475 

P
2
-stations and r

1 
for 1141 P

1
-stations, for the 

average lengths of 30 and 54 years, are 0.025 and 
0.016, respectively, which are 90 and 29 percent 
greater than. the corresponding values for the series 
of 1141 stations, inferred to be approximately homo­
geneous and/or consistent. Regardless of the i nfer­
ence techniques used in separating 1614 annual preci­
pitation series into 1141 approximately homogeneous 
and/or consistent, and 473 nonhomogeneous and/or 
inconsistent series , the probabil ity is high t hat part 
of the positive serial correlation for the case of· 
1141 series , for both the 30 and 54-year lengths. ~Y 
be due to some nonhomogeneity and i nconsistency, 
present in nearly all the annual precipitation series. 
This is a reasonable conclusion because it is 



self-evident that the longer a time series becomes, 
the larger the probability of introducing at least one 
form of inconsistency or nonhomogeneity. For practi­
cal problems related to water resources conservation, 
control, and development, the annual precipitation can 
be considered to be either an independent or an almost 
independent stationary stochastic time process, pro­
vided the effects of nonhomogeneity and inconsistency 
are properly taken into account on the time scales of 
many decades. 

(3) The two Q2-series of annual effective preci­

pitation, worldwide series and series of North America 
[4), have higher average estimated first serial corre­
lation coefficients than were found for the P1-series 

of annual precipitation. For worldwide Q2-series, 

whose average length is 55 years, rl was estimated as 

0.136. For Northern American Q2- series, whose average 

length is 37 years, r1 turned out to be 0. 181 . Let's 

define {P} as the time series of annual precipitation, 
{E} as the time series of annual evapotranspiration, 
and {p } as the time series of annual effective preci-e 
pitation. Evidently Pe = P - E. Since {p} is an 

approximately independent time series and the values 

of r
1 

for both Q2-series (Pe-series) are much greater 

than r
1 

for P
1
-series, than {E}, regardless of its 

dependence on {P}, must be an auto-correlated and 
hence time dependent process. Because P - E = R + 6W, 
with 6W the change in the total water stored in a 
river basin at the end of each water year and R the 
runoff, then E = F (6W), i.e. it is dependent on the 
change ~W in the stored water available for evapora­
tion, besides being dependent on the total precipita­
tion. One may expect that the 'potential annual evapo­
ration (evaporation where water is always available 
for full evaporation potential) should also be an 
i ndependent annual process similar to the annual pre­
cipitation. Since more stored water means more water 
is available for evaporation, and since the stored 
water depends on the hydrologic history of previous 
time intervals, the effective annual evaporation must 
be a dependent process, similar to the dependence of 
basin water outputs, with precipitation the input and 
both these outputs dependent on the state of water 
storage of various river basins. 

(4) Series of annual runoff are either indepen­
dent processes, when negligible changes in the basin 
stored water occur at the end of each water year, or 
they are dependent processes when the storage at 
years' ends fluctuates in a relatively large range in 
comparison with the average annual runoff. Large 
variations in water carryovers from year to year may 
be considered as the principal physical factor which 
affects the time dependence of both the annual evapo­
ration and the annual. runoff. The two sets of annual 

runoff series used in investigations gave rl = 0.175 

as the average for the 140 worldwide selected runoff 
series, with the mean series length of 55 years , and 

rl • 0.197 as the average for the 446 runoff series 

in western North America, with the mean series length 
of 37 years. Both sets showed that the average first 
serial correlation coefficient of annual runoff series 

is close to about rl = 0.20. 

2 

1-2 Basic Scientific Controversies Related to 
Persistence in Hydrologic Time Processes 

Dependence in hydrologic time series is often 
referred to as hydrologic persistence. Values of the 
process tend to persist in the sense that probabili­
ties of high values following high values (and the con­
verse, probabilities of low values following low 
values) tend to be higher than probabilities associ­
ated with the same high (or low) values of time inde­
pendent hydrologic processes. Sometimes, the concepts 
of short -range, mid-range, and long-range persistences 
are used; rarely are the ranges of time intervals 
associated with these concepts adequately defined. 

It is generally accepted by most geophysicists 
that basic climatic changes occur as long-range vari­
ations. The changes occur mainly as a result of astro­
nomical causes, related to changes in the distribution 
of incoming solar energy over the earth's surface. 

The Milankovich theory of astronomical causal 
factors shows regular, almost-periodic changes in the 
eccentricity of the earth's orbit (one complete oscil ­
lation in about 93,000 years}, the tilt or obliquity 
of the ecliptic (one complete oscillation in about 
41,000 years), and the precession of the equinoxes 
(21,000 years per one complete oscillation), (3, 4, 5]. 
These deterministic, astronomical movements produce 
long- range changes in the distribution of incoming 
solar energy over the earth's surface, even under the 
assumption (which is now in doubt) that no significant 
changes in the solar energy constant have occurred for 
the last couple of millions of years. The change in 
the seasonal distribution of energy over the earth's 
surface must result in changes of climate on the earth. 
When ice sheets grow over the continents, the ocean 
level recedes, the continental shelves become exposed 
with a resulting increase in the continental surface 
and a decrease in the ocean areas'. This leads to 
changes in oceanic processes (such as currents, heat 
budget, evaporation, types of water mass exchange~, 
etc.). Similarly, changes occur in the atmospher1c . 
composition, circulation, climate and the basic hydro­
logic processes of precipitation, evaporation, and 
runoff. Only well-studied geophysical problems, 
examined jointly as paleo-oceanography, paleo­
meteorology, paleo-geology, paleo-morphology, ~aleo­
glaciology, paleo-hydrology, and other geoph~s1ca~ 
paleo-processes, could explain the real phys~ca~ 1nter­
actions between the astronomical, almost-per1od1c 
movements and the various geophysical processes in 
order to explain these long-range climatic changes . 

Historic evidence, particularly from the last 
Pleistocene ice age, confirms that long-range climatic 
changes do occur on the earth. These changes undoubt­
edly affect the annual ser ies of precipitation, evapo­
ration, and runoff of various river basins. The main 
question from the hydrologic standpoint is, what are 
the rates of change with time of various parameters 
associated with these processes. It can be shown that 
the rate of change is so small for a time span of 3-4 
centuries (6] say 150-200 years of the past and 150-
200 years of the future , that the annual processes of 
precipitation, evaporatio~, and ~off may be sa~ely 
considered to be ~empo~y btdtionaAy stochast1c pro­
cesses. The best available observational data on pre~ 
cipitation ~d runoff of the last 100-200 ye~rs.show 
no significant change in the basic character1st1cs of 
annual hydrologic processes, particularly if account 
is taken of the unavoidable nonhomogeneities and/or 



inconsistencies (and the sampling fluctuations of 
these characteristics), t o be found in the data associ­
ated with any real geophysical stochastic process. 

The question which highlights the basic contro­
versy among climatologists, hydrologists, and other 
specialists in geophysics could be summarized as fol­
lows: are the climatic and hydrologic processes, 
taken on an annual basis, to be considered as tempo­
lt.a.!Li.,ty ~ta..ti..onalllj or qUit6.i..-~ta..ti..ort0.1Uj, with a slow rate 
of change of the basic characteristics of stochastic 
proces ses for the period limited to 150-200 years of 
the recent past, and by extrapolating this recent past 
for the period of 150- 200 years of the near future? If 
This tempciUVUJ ~ta..ti..oYIIllLit:Jj was rejected, one would 
then expect that the extreme events of some distant 
past, especially of the post-glacial era, may occur 
today--suddenly--with the same probabilities as they 
occurred before; this is not a plausibl e hypothesis, 
as the following argument shows. The biblical Noah 
inundation may well have been an event produced by a 
combination of extreme precipitation and the simulta­
neous melting of accumulated mountain snow and ice in 
an era of general melting and retreating of ice sheets 
and ice glaciers of the Northern Hemisphere. While it 
is reasonable to expect the extreme precipitation event 
of the Noah type to occur from time to time somewhere 
in the world by change (such as the 40- days precipita­
t i on event in Tunisia in September 1969, or similar 
examples), the other basi c condition of rapid melting 
of large quantities of accumulated snow and ice does 
not exist at present in most areas of interest and, 
therefore, this melting cannot be compounded with simi­
lar rare events as experienced i n the recent past. 

This controversy has an important and very practi­
cal i mplication for water resources planning and 
management: is it legitimate (and with a very high 
probability it is) to draw information about the 
characteristics of hydrologic processes and available 
water resources in the last 150 to 200 years' from the 
best data on precipitation and runoff available in the 
world, and to expect approximately the same or very 
close characteristics to occur in the realization of 
these processes and in available water resources in 
the next 150 to 200 years? If this approach is not 
justified, should then the planners of future water 
resources systems use the opposite approach , namely to 
speculate with various cli matic change theories 
(mostly supported by unreliable or at least questiona­
ble evidence), developing the inevitable conclusion 
that the hydrologic processes and their characteris­
tics could suddenly or r e latively rapidly evolve? In 
the extreme, these conclusions may imply that the cli­
mate could rapidly deteri orate into a new ice age in 
the northern parts of America, Europe, and Asia; how­
ever, this is very unlikely from the physical point of 
view as the following argument demonstrates. 

A recent study [6) underlines the point that the 
buildup of ice sheets and large mountain glaciers is a 
relatively slow process, while the melting of those 
once· created may be a relatively rapid process. This 
implies that the rate of change in the initiation 
phase of build-up of ice sheets and large glaciers is 
much slower than the rate of change during their disap­
pearance. Therefore, a relatively fast rate of melt­
ing of the Pleistocene ice sheets in northern America 
and northern Europe cannot be taken as the potential 
rate of the buildup of a new ice sheet. Besides, the 
extrapolation of the Milankovich astronomical almos t ­
periodic long-range fluctuations, as the predictable, 
deterministic astronomic process, shows that for the 
next 100,000 years little buildup of an ice sheet in 
the northern hemisphere can be expected, though some 
minor cooling should be expected to take place. 

3 

Considering an interval of time of about 350 
years, say from 1800 through 2150 (175 years in the 
immediate past and 175 years i n the immediate future), 
the following conclusions may be safely drawn for the 
investigations of long-range water resources problems, 
with a very high probability that these conclusions 
will be confirmed by future observations: 

(1) Processes of annual precipitation, annual 
evaporation, annual effective precipitation on river 
basins, annual runoff from river basins, and similar 
and/or interconnected hydrologic processes may be con­
sidered as approximate tempoiUVUJ ~tat.i..onaAy stochastic 
processes, provided the systematic errors in observed 
data (inconsistency), the man-made changes and acci­
dents in nature (nonhomogeneity in data), and the 
s ampling fluctuations i n realizati ons of these random 
processes , are properly taken i nto account. 

(2) If the annual precipitation may be considered 
as an approximate, temporary stationary stochastic pro­
cess in the interval of the past 150-200 years, it is a 
logical analogy to consider the annual evaporation also 
as an approximate, temporary stationary stochastic 
process. 

(3) The major time dependence in hydrologic 
annual series is produced by the complex geophysical 
processes of water storage in r i ver basins, with their 
random fluctuations from year to year and periodic­
stochastic fluctuations within the year. The ambiguity 
of the concept of hydrologic long-range persistence as 
related to the time scale of several decades, or a 
couple of centuries, as contrasted with the anal ysis of 
actual geophysical proces~es which create the time per­
sistence, only confuses the issues, though it may 
serve particular objectives of su~?orting theories and 
mathematical models advanced for hydrologic persistence. 

(4) The more anci ent the data of observed (mea­
sured) or inferred hydrologic variables are, the more 
likely it is that they contain some systematic errors 
(inconsistency). The use of earlier, less reliable 
instruments and measuring techniques , and the ensuing 
changes in instrumentation and techniques of measure­
ments, as well as the environmental impacts on obser­
vational stations, support the existence of inconsis­
tency in various series. 

(5) The longer a series, the greater is the proba­
bility of some nonhomogeneity being present in the data, 
produced either by man's activities or by accidents in 
nature. 

(6) The probabi lity that two sample means of two 
subseries of an observed series are identical is very 
small. Sampling fluctuations which leave visual 
impressions of trends , jumps, and light cyclicity are 
often erroneously treated as population trends, jumps, 
and cyclicities. 

(7) Some mathematical models proposed for the 
description of time dependence in hydrologic annual 
series may often be the results, partly or fully, of 
inconsistencies, nonhomogeneities, and sampling fluc­
tuations, rather than of the underlying true geo­
physical processes as derived from large sets of series 
from stations all around the world. 

(8) The analysis of only a limited number of 
stations, part icularly when these sample series contain 
inconsistency, nonhomogeneity, and evidently large 
sampling deviations in comparison with the adjacent 
stations , may well support a particular concept or 
mathematical model, even though it cannot be justified 
by the existing geophysical and/or historial evidence 



about the rel iability of available data for those 
stations . 

This investigation of fluctuations of wet and dry 
years of annual series of hydrologic processes is thus 
committed to using large sets of series. In using 
large sets of series, the biases due to individual 
series are minimized (especial ly the bias contained in 
the form of extreme sample deviations), while inconsis­
tency and nonhomogeneity in the data may be signifi­
cantly reduced by some objective criteria of selecting 
the sets of series. In some cases, the bias may be 
reduced, because of the combined ef;ect of opposing 
biases in a large number of series. 

It is feasible to process a very large number of 
time series in the present age of large digital com­
puters, treating them as space-time processes. The 
space variation is covered by a set of points in a geo­
graphical coordinate system and the time variation by 
t he longest observed series, reasonably consistent and 
homogeneous. Results of investigations should be inde­
pendent of particular characteristics of a limited num­
ber of series in a restricted area. 

It is a common practice among researchers to aban­
don and not to report on results of investigations if 
the research data do not support either the approach 
taken or the hypotheses advanced. Mostly, the confirm­
ing results are reported in literature. A reasonable 
question may be, whether in some cases the confirming 
results in the assumed approach are nothing else than 
the extremes of sampling deviations, with small proba­
bilities for them to occur again in future realizations 
at the same stations. The well-publicized Brueckner 
35-year climatic cycle, developed for the first 70 
years of hydrologic data in Europe, was not supported 
by the data of the next 40-50 years. If Brueckner had 
used a wide range of variables, and from several large 
regions of the world, it is likely that he would not 
have concluded that a regular 35-year cyclicity existed 
in his climatic and hydrologic processes as he did by 
using the European data only. 

1-3 General Explanation of Long- Range Climatic 
and Hydrologic Persistence 

It is an attractive and pl ausible approach, at 
least to the writer of this paper, to explain the long­
range climatic and hydrologic changes of annual pro­
cesses by the theory of a deterministic-stochastic cli ­
matic process. The deterministic part is produced by 
the processes following the Milankovich theory of 
astronomical movements. The stochastic part is 
explained by various random processes in the earth' s 
environments, or by the geophysical processes. 

The distribution of incoming solar energy at the 
upper atmosphere is determined uniquely at a given his­
toric t ime by the astronomical movements of orbital 
eccentricity, tilt, or obliquity of the ecliptic, and 
precision of the equinoxes for whatever the solar con­
stant may be at that time . Figure 1- 1 shows periodici­
ties of the major astronomical cycles which affect the 
geophysical processes. Because the computed annual 
series mask the higher frequency cyc les up to the year, 
they are mainly affected by the lower frequencies asso­
ciated with the Milankovich astronomical proces ses. 
The sunspot cyclicity is not a function of positions 
of celestial bodies, and is not discussed here 
(although it may introduce perturbations on the solar 
constant ). Therefore, for a given state of tectonic 
plates of the earth's crust (say the positions and 
elevations of continents and continental shelves), and 
for given states of accumulated snow and ice over the 
various areas at a given historic time, the earth 
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reacts in a given manner to the deterministic distribu­
tions in space and time of the incoming solar energy. 
The state of distTibutions of water, snow, ice, and 
volatiles in the atmosphere, oceans, and on the conti­
nents predetermines the general earth ' s response to 
these deterministic distributions of incoming solar 
energy. The average existing patterns of oceanic, 
atmospheric, and continental processes adjust to the 
incremental changes in distributions of this energy in 
an evolutive manner. 

The stochastic part of the climatic process 
results from the versatile stochastic processes in 
oceans , on continents , in the continental crust, but 
particularly in the atmosphere. The major properties 
(probability distribution, time dependence) of the 
stochastic part of climatic variations may be more or 
less dependent on the average deterministic responses 
of the earth to the earth's distribution of the i ncom­
ing solar energy in space and time. The random pro­
cesses of various earth's environments are mutually 
dependent processes, some of them being the preceding, 
causal processes, with others the resulting, effect 
processes, or they may be simultaneous dependent 
ptocesses. 

4VERAGE TillE OF 
ONE COKPLETE 
OSCILLATION 

TYPE OF ASTRONOIII CAL MOVEMENT 

100
•
000 !E:;!~93,000 YEARS ORBITAL ECCENlRICITY ~ 
IE~ •1 , 000 YEARS OBLIQUITY or THE ECLIPTIC (TILT) 
l+' r.-.1' 

1 
,.,_· 1j-i'-fZ1 000 YEARS PltECESSIOII OR LONGITUDE Of THE , 

1o.ooo~~~~~u~· 1,,~i~:~ .. ~.!"!~··~· ~·~~~~~~"~.EL~IOIIII·~·~· ~~-~·,··~' 
I I II, ,1 

liP Ill!'''' 1 11!111 1 1 '~ 11 : qli lllll i' ·I~' 1.ooo,ll l. 1111. ~ 1' 1 I I 

I •'I I II ' !I 11. :' 111 !1 11 
100

llllflm!l· ·Ill o I 

I i 

0.1 IJl!J!!! lJW! li l lillJ~~! I~WJ I~ llW llWJJ l~J 
EARTH 

Fig. 1-1. Periodicities of Major Astronomical Cycles 
which Affect the Geophysical Processes. 

Until evidence to the contrary comes to light, one 
may consider the solar constant as a real constant , 
with only the position of bodies in the solar system 
being the major factor in determining the space-time 
distribution of incoming solar energy over the earth. 
In a condensed way, this approach to the long-range 
climatic changes is based on the hypothesis that the 
astronomical movements produce the deterministic part 
in the averages and other parameters of the climatic 



and hydrologic variables of the earth, while all types 
of geophysical random processes in all of the earth's 
environments (particularly in the atmosphere, with the 
air being a nonconservative fluid), represent the 
sources of the stochastic part of the climatic and 
hydrologic variables. The dependence in the stochas­
tic part is the result of various feedback processes, 
due mainly to storage or depletion in the earth's 
environments of many physical equivalents of random 
variables (such as vapor, water, snow, ice, heat, 
volatiles, solid particles, chemicals, kinetic energy, 
etc . ) . The above general approach to climatic and 
hydrologic changes assumes also that man ' s activities 
and special accidents in nature (catastrophies) do pro­
duce the nonhomogeneities or nonstationarities in sto­
chastic components in complex deterministic-stochastic 
series. 

l-4 Selection of Investigat ion Method 

The selection of an investigation method for the 
analysis of hydrologic time series may depend on 
whether a series is stationary or nonstationary. As 
stated in the preceding text, the annual series of 
most hydrologic time processes may be safely consi­
dered either zempo~ ~tatio~ (say, approximately 
stationary for a couple of centuries) or Quah~­
~tatio~y (the trend in the change of basic population 
parameters in the time span of 3-4 centuries may be 
neglected), or both. 

In reference [2] the investigations of fluctua­
tions of wet and dry years used the autocorrelation 
technique. In this paper the spectral analysis, or 
the variance density spectrum, is selected as the tech­
nique for investigation. One may question this latter 
selection by asking whether the use of spectral analy­
sis provides any i mprovement, substantial difference 
or additional information in comparison with the use 
of autocorrelation technique. The question is logical 
because the Wiener-Khinchine equations, as shown in 
Chapter II, provide unique transformations between the 
autocorrelation functi on (estimated by the sample 
correlogram) and the spectral, variance density func­
tion (estimated either by the Fast Fourier Transforms 
and smoothed, or by smoothing and transforming the 
correlogram). Essentially, the two techniques should 
produce the same results as two equivalent methods in 
the investigation of hydrologic stationary processes. 
Three reasons have induced the writer to use the 
spectral analysis in this study of hydrologic annual 
series: 

(1) Some specialists are more exposed to the 
spectral analysis technique than to the autocorrela­
tion technique; they can better see and infer the type 
of stationary process in the frequency domain of spec­
tral analysis than in the time- lag domain of auto­
correlation analysis. 

(2) Spectral density graphs are smoothed in two 
ways: (a) by using the smoothing functions (either in 
the time-lag domain by a smoothing function, or in the 
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frequency domain by the kernel function), and (b) by 
using a large number of series in a region, averaging 
the correlograms and esti mating the spectral densities 
at given frequencies, to obtain mean regional results . 
The inference from the averaged, regional spectra is 
expected to demonstrate more reliably the basic prop­
erties of any process studied than the case would be 
if only a limited number of spectral graphs of indivi­
dual s~rie~ were examined . 

(3) New data have been accumulated since refer­
ence (2] appeared. The conclusions derived by the 
autocorrelation technique may be then either revised 
or reinforced by another technique regardless of the 
strong interrelationship between these two techniques . 
Furthermore, the United States is divided into six 
regions, in this new study, in order to investigate 
whether signifi cant di fferences in results may be 
discerned among the regions in using these two 
techniques. 

l -5 Objectives of Investigations by Spectral Analysis 

The analysis of annual precipitation, annual 
effective precipitation and annual runoff by using the 
variance spectra technique has the following detailed 
objectives: 

(a) To show whether these hydrologic series are 
independent or dependent stationary processes; 

(b) To find the degree of time dependence when 
it is present in time series, analyzed for sets of 
series: 

(c) To make inferences concerning the most appro­
priate mathematical models to be used for description 
of dependence for a s et of time series; 

(d) To compare the degree of time dependence in 
these series, especially how it increases from preci­
pitation to runoff, and 

(e) To investigate the self-stationarity o·f 
annual runoff time series from a regional point of 
view. 

1-6 Continuous Variance Density Spectrum Versus the 
Discrete or Line Spectrum 

Since prev ious studies have shown that annual 
series of precipitation, effective precipitation and 
runoff do not contain periodicities, the use of the 
line spectrum (periodogram) is not the most feasible 
technique to study the approximately stationary time 
processes . When the range of frequencies with signi­
ficant variance densities of a stationary process must 
be estimated, the line spectrum is not the most appro­
priate technique because of bias and inefficiency in 
estimates. It i s replaced by the technique of continu­
ous variance spectrum. For this reason, the periodo­
gram approach is not even attempted in these 
investigations. 



Chapter II 
TECHNIQUE OF SPECTRAL ANALYSIS 

2-1 Mathematical Description of Time-Dependent 
Hydrologic Processes 

A time-dependent hydrologic process is a stochas­
tic process involving hydrologic variables. Sequences 
of observations on the variables which characterize 
the hydrologic processes are either continuous or dis­
crete stochastic processes. The continuous stochastic 
pr ocesses found in hydrology (and some discrete ones) 
are nonstationary processes, mainly because of the 
periodicity found i n basic parameters induced by the 
diurnal, monthly, and annual astronomic cyclicities. 
Various sources of trends and jumps also cause some 
series to be nonstationary processes. The term ~ce46 
is used here in the narrow sense of 6.tocha.6.ti.c. ~Ce.66. 
It is further assumed in these investigations that any 
deterministic dependence on time, such as known trends 
or built-in periodicity, have been removed from the 
process und.er consideration. The diurnal, monthly, 
and within-the-year periodicities in parameters disap­
pear by integrating a process over intervals of a year. 
The discrete annual series of precipitation, effective 
precipitation, and runoff considered in this study are 
free of trends and low frequency periodicity. By con­
trast, any undetected nonhomogeneity i n parameter s of 
these series, produced by various factors as discussed 
in Chapter I, will cause nonstationarity, and it is 
this that should be detected by using variance spectrum 
analysis. 

The remainder of this chapter contains a condensed 
presentation of the practical variance spectrum tech­
nique, adapted to the objectives of this paper. 

2-2 Variance Density Spectrum 

Four ier (periodogram) analysis of a time series 
tacitly assumes that the series is made up from sums of 
harmonics which have fixed (or almost fixed) periodici­
ties. The continuous spectrum introduced by Wiener 
overcomes this prerequisite. Spectral analysis has 
been used effectively in many fields for the analysis 
of the structure of time series. It is based on the 
concept of the continuous spectrum, which is a 
relationship between variance densities and frequencies. 

The population spectral (variance) densities, 
v(>.), of a continuous series are obtained by the 
Fourier transform, for a given angular frequency, , 
of the corresponding population continuous autocorrela­
tion function, p(t), by using the Wiener-Khinchine 
equat ion: 

v(.l.) • ~11 f p(T) eiAT dt " ~11 f p(t) cos A"C d't 
-~ -~ (2-1) 

Similarly, for a discrete time series, the spectral 
density function is the Fourier transform of the dis­
crete autocorrelations function, p(k),and is again a 
function of .>.: -v(.>.) , I p(k)ei.>.k 

k'"-"' 

1 -211" i p (k) cos .Ak. 
k•-• (2-2) 

In the opposite transformation, the autocorrela­
tion function is the Fourier transform of the spectral 
function, so that for the continuous case 

... -
p(1) • f v(.>.)eiTA d.>. = f v(.A) cos TA d.>. 

(2-3) 
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and for the discrete case 

.. ik.>. ... 
p(k) a J v(.>.)e d.>. • J v(A) cos k.A d.A 

(2-4) 

It frequently occurs in 6p~ctnum caAp~~y that an 
appropriate moving average scheme is needed to smooth 
either the sample estimates r(t) and r(k) of the auto­
correlation functions p(t) and p(k) (Eqs. 2-1 and 2-2), 
or to smooth the estimates v(.>.) of v(>.) after the 
transformation has been made. For the continuous case, 
smoothing i n the time domain gives 

... -
v(A) = ~,. I D(t)r(1)e-Utdt : ~,. I r(1)D(1) cos AT d• , 

_.. (2-5) 

where D(t) = a smoothing funct ion for the estimate 
r(~) of p(t) in the time domain. The transformation in 
the discrete case gives the following estimates of 
v(.A) 

v(.A) ~,. [1 + 2 i r(k) cos .>.k) 
'k=l (2- 6) 

where 0 ~A~ 11. The period w, the frequency f and the 

angular frequency A are related by f • 1/w = .>./2~. Now 
E[v(.>.)) = v(A), [8) , and the mean of v (.>.) is l /11 over 
the range of .>., as the expected value of all variance 
densities over 0 < A < 'II" in case of a standardized 
process (0,1). For the estimates of variance densities 
for cases in which the ordinary frequencies, f, are 
used, Eq. 2-6 becomes 

g(fJ a 2[1 • 2 L rCk) cos 2~fkl 
k• l (2-7) 

with g(f) z the estimates of the variance densities 
y(f). Here, 0 < f < 0.50, f 2 1/w, E(g(f)) 2 y(f), and 
the mean of all- y(£) values is two over the range from 
0 to 0.50 for a standardized process (0,1). 

Using Eqs. 2-6 and 2-7 for the estimation of vari­
ance densities, y(f), requires more computer time than 
the application of the Fast Fourier Transform, FFT, for 
estimating g(f) directly and smoothing these estimated 
variance densities in the frequency domain. Both 
approaches--the Wiener-Khinchine transformations and 
Fast Fourier Transforms--lead to the same results, if 
the same smoothing function is used in the frequency 
domain (or the corresponding function in tne time 
domai n) and the same resolution (the number of vari­
ance density ordinates) is sel ected for the estimation 
of densities; the only difference is a saving of compu­
ter time by using FFT. If Eq. 2-6 or Eq. 2-7 are used, 
with the infinite limit of the sum replaced by a value 
k • m, with m determined by some cr iterion (either 
objective or subjective), and if a smoothing function 
D(k) is introduced, Eq. 2-7 becomes 

g(f) = 2(1 + 2 
m 
L D(k)r(k) cos 2wfk] 

k•l (2-8) 

This is a practical form of the equation for transform­
ing the estimate r(k) of the autocorrelation coeffi-

cients p(k) into the estimates g(f) of the variance 
densities y(f). In practice, p(k) are estimated by the 
sample values r(k), and their transforms g(f) are 



smoothed either in the time domain by Eq. 2- 8, or 
similarly in the frequency domain by the corresponding 
kernel function. 

It should be stressed tha~ the following terms: 
the moving average scheme, the moving average model, 
the smoothing function, the filtering function, the 
filter, the window function, and similar terms, are 
considered all synonymous for the purposes of this 
paper. The term 6moothing 6u~n is used in this 
text. 

2-3 Estimat ion of Variance Densities 

The practical use of the continuous spectrum 
began in 1948 and 1949, mainly in the work of H. T. 
Budenbom and F. W. Tukey, when they initiated the analy­
sis of radar trackings for the Bel l Laboratories in the 
form of continuous power spectra. Fourier cosine trans­
forms of the type of Eqs. 2-1 and 2- 2 were used . 
Blackman and Tukey [8] suggested .. the use of a three­
point smoothing function i n the frequency domain to 
smooth the computed variance densities, with the sym­
metrical weights: ( l /4, 1/2, and 1/4), to produce 
smooth and less biased estimates of the variance 
density spectrum. 

The three smoothing functions that were most com­
monly used in USA during the 1950's and 1960's are 
those proposed by Bartlett, Tukey, and Parzen. Smooth­
ing in this investigation is made by Parzen's smoothing 
function in the time-lag domain, substituted into 
Eq . 2-8. Parzen' s smoothing function is: 

D(k) 1 -6r~r . 6r~t 
2 [ 1 - ~t 

= 0 

for k < ~ 
- 2 

m 
for 2 < k < m 

for k > m 

(2-9) 

Smoothing by Eq. 2-9 accomplishes the following 
objectives: (1) it is simple, (2) it uses small 
computational time, (3) the resolution of distance 
between discrete spectral fines in estimating the con­
tinuous spectrum can be kept relatively large, or the 
inverse, the number of points at which the spectral 
estimates are made on the line 0 < f < 0.50 can be 
relatively small ; and (4) the bias and inefficiency of 

estimates g(f) of the spectral densities y(f) are 
relatively small [9]. The selection of min this study 
is made as m = N/4, and the spacing of the values is 
unrelated to the choice of m. It was arbitrarily 
selected as ~f = 0.05, so that eleven ordinates of 

g(f) need to be estimated on the interval 
0 < f < 0.50 . 

2-4 'Whitening 

The concept of whitening the sample series is 
based on the hypothesis of a stochastically dependent 
model for a stationary process. The computed residu­
als of the model should then be time independent sto­
chastic components (TlSC) or independent identically 
distributed random variables (IIDRV). If the hypothe­
sis of the model with its unbiased and most efficient 
estimates of parameters is correct, the residuals 
should pass the test of independence; the hypothesis of 
the d·ependence structure and/or model, with the cor­
responding estimates, should be accepted. The term 
~~ng usually refers to normal random variables; 
however, the concept of whitening does not necessarily 
include the condition that the probability distribution 
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of residuals must be normal. As long as residuals are 
time independent identically distributed random vari­
ables, with moderate skewness coefficients, they may 
be considered as white noise, and the series called a 
whitened series. The major advantage of the whitening 
concept is that the inference technique in spectral 
analysis about the hypothesized independent residuals 
is simpler than in the case of dependent processes. 
The expected variance densities of the whitened pro­
cess are all equal. The case of white noise,Eqs. 2-7 

and 2-9 yield E[g(f)] = y(f) = 2.00. The tolerance 
limits for the hypot hesis of y (f) = 2. 00 for all fre­
quencies are also equal for all f values except for 

the two extreme values of g(f), namely g(O) and 

g(O.SO), because of the double sampling variance of 

the two estimates g(O) and g(O.SO) in comparison with 
the variance of all other estimates of intermediate 
frequencies. 

2-5 Variance Density Functions for the First and 
Second-Order Linear Autoregressive Models of 
Temporary, Stationary Annual Stochastic Processes 

Denoting the time interval of discrete series as 
unity (in this study t = 1 year), the expected spec­
tral function of a standardized process (i.e. with 
zero mean and unit variance) following the first­
order autoregressive (Markov) model 

is found to be: 

2 2(1 - p ) y (f) 
l-2p cos 2~f + p2 

(2-10) 

(2-11) 

2 2 with y(O) ~ 2(l+p)/(1-p), y(0.25) 2(1 -p )/(l+p ) , 

and Y(O.SO) = 2(1-p)/(l+p) The maximum ordinate is 

always y(O) at f = 0 . 

For the second-order autoregressive model, with 
both x and ~ standardized variables (0,1) 

(2-12) 

the spectrum function is 

y(f) 
2 2 2 

(l-a2)[l+a1+a2+2a2-2a1 (1-a 2)cos2~f-4a2cos 2~f] 
(2-13) 

with o2 = (l+a2)(1-a~+a;-2a2)/(l-a2), and the maximum 

of y(f) at f ~ f
0 

determined from cos 2~f0 = a
1 
(l-a

2
)/ 

2- 6 Tolerance Limits of the Spectrum for Time Inde­
pendent Identically Distributed Random Variables 

The estimated spectral densities of standardized 
normal independent process are chi- square distributed 
with a proper number of degrees of freedom. This num­
ber depends on : (1) the length m of the correlogram, 
rk with k '" 1,2, .. . -, m, used in Eq. 2-7 in estimating 

the spectral densities , (2) the sample size N, and 



(3) the smoothing function applied. This latter 
effect is usually given for any proposed smoothing 
function by its author(s), with EDF (effective degrees 
of freedom) expressed only as a function of N and m, 
for each smoothing scheme. For the smoothing function 
of Eq. 2- 9, the suggested values [9] for v are: 
EDF • 3.7 ~/m for normal variables, and EDF = 4 N/m 
for non-normal variables ; form = N/4, EDF = 14.8 for 
normal variables and EDF = 16 for non-normal variables. 

For the selected tolerance level a (say a = 0.05, 
or a = 0.10), the tolerance limits are 

2 2 
2x012 CEDF) 2x l-a/2 (EDF) 

Tl EDF and T2 EDF (2-14) 

2 2 
with X a/2(v)(EDF) the value of x for given EDF at the 

left tail for the probability a/2 and xf_a12CEDF) the 

value of x2 on the right tail for the probability 

(1 - a/2) . Because E(x2(EDP)] = EDF, while E[g(f)] • 2, 

the values x~12 (EDF) and xi _ a/2(EDF), divided by EDF 

and multi plied by two , produce the necessary scale, so 

that the E[x 2 (EOF)] = E[g(f)] = 2.0. Similar ly, 

var [x2(EDF)) = 2 EDF , so that var g(f) • var [2x2(EDF)/ 
EDF] = 8/EDF. 

2-7 Tolerance Limits for the Spectrum of a Set of 
Spacially Dependent Series of a Region for Time 
Independent and Dependent, Identically Distri­
buted Random Variables 

For the study of a large number of station series 
of the same random variable in a given region, the 
following two methods may be used to investigate 
whether the observed series or their whitened series 
are time independent. One method consists of testing 
each series individually to discover whether it is 
independent, and then seeing whether the total number 
of stations for which the hypothesis of independence 
is accepted is greater than a critical tolerance num­
ber. In the opposite case, if the percentage of cases 
with the accepted hypothesis is equal to or greater 
than the tolerance level (given as the probability of 
accepted hypotheses for i ndependent processes) , the 
observed or whitened series of a region are accepted 
as time independent. The other method uses the mean 
spectral variance densities. These mean densities are 
computed for each discrete frequency for which vari­
ance densities are estimated from all the individual 
station spectra of a region. In this paper the esti­
mated variance densities of all n series of a region 
and a given variable are averaged. The tolerance 
limits for the mean spectrum are then determined, 
taking into account the entire set of n series, their 
sample sizes , N., and their cross correlation and 
autocorrelation, dependence. 

In using either of the above two tests for 
independence, the relation of all the estimated vari­
ance densities to tolerance limits must be precisely 
defined. The approach that all the estimated variance 
densities should be confined within the tolerance 
limits should be viewed as a conservative approach, or 
as a too rigorous a criterion. If variance densities 
are estimated at m + 1 points of the spectrum, a 
criterion for accepting the independence hypothesis 
may be 

m~ < a(m + 1) (2-15) 
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with m~ ~ the number of densities allowed to be out­

side the tolerance limits. The dependence between the 

densities g(f) and frequencies (as a result of smooth­
ing by Eq . 2-9 in order to obtain less biased and more 
efficj ent estimates), speaks somewhat against any 
density being outside the tolerance limits. However, 
assuming that for a given smoothing function the 
effective number of degrees of freedom, EDF, of 

Eq. 2-14 for the distribution of estimates g(f) has 
been well determined, then a test using Eqs. 2-14 and 
2-15 for individual series should be performed. 

The first method of testing the regional validity 
of time independence by the number of series which pass 
the test is not attractive, because of high lag-zero 
cross correlations between station series. If by pure 
chance a station series in the center of a region has 
the sample statistics drawn from the tails of their 
distribution, a large number of surrounding stations 
should also show similar sampling deviations from the 
population mean of that statistic. In other words , 
the proportion of the number of individually tested 
regional station series, which pass the test of inde­
pendence, is not a proper test statistic to use. 

The second method, that of testing the averaged 
spectra of n station series , requires the determina­
tion of the effective number ne of mutually indepen-

dent stat ion series as being equivalent to n inter­
dependent series; evidently ne ~n. The variance of 

the estimated mean spectrum of ne mutually independent 

series is equivalent to the variance of the estimated 
mean spectral densities of all the station series for 
n regionally dependent series. 

For every statistic there is a different ne value, 

because the variance of estimates vary from one statis­
tic to another. As the estimated variance densities, 

g(f), are the Fourier transforms of the estimated 
autocorrelation coefficients, rk, one can use the 

effective number ne of rk as being equivalent to the 

effective number of g(f). Therefore, the problem is 
to determine the number of ne spacially independent 

series equivalent to n spacial ly dependent series. 
Because the autocorrelation coefficients for annual 
series converge fast from r 1 ~ 0 to rk = 0, it is 

sufficient i n general to study the effective number ne 

of stations only for r 1 > 0. 

In cases the available annual series of size N 
are autocorrelated, then a small size Ne ~ N is the 

sample size equival ent to the time i ndependent series 
for each statistic. Therefore, n series spacially 
dependent, each series of size N also time dependent, 
can be replaced by the number ne of space independent 

series, each of size Ne of the time independent series. 

The variance of r
1

, and correspondingly of g(f), of nN 

space-time dependent, observed annual values should be 
equal to the variance of r 1, and correspondingly of 

g(f), of n N of space-time independent annual values. 
e e 

To estimate n N , the r
1 

values of all series are 
e e 

needed. Two methods are feasible for the estimation 



of r 1 values: (1) To use the lag- zero cross correla­

tion coefficient matrix of all the station series in 
each area for a given variable; and (2) To use the 
distribution of r

1 
to find its variance, and from this 

variance the number neNe· of space-time equivalent inde­

pendent series for each area and each variable. 

The second approach by using the distribution of 
r

1 
of n regional series to determine ne seems simpler 

than the first approach by using the cross correlation 
matrix of all the series . In using the matrix method, 
one must compute n(n - 1)/2 values of the lag-zero 
cross correlation coefficients and average them. In 
the second approach only the n values of the first 
serial correlation coefficients r 1 need to be esti-

mated for each region. Both approaches are described 
herein to show how they should be used, although the 
second method is used only in presenting the computa­
t i onal results and in obtaining the tolerance limits 
for the average spectral densities in Chapter IV. 

ConAelation ~x ~pp~oach. The simple average 

r
1 

is computed using 

(2-16) 

in which rl,j = the r 1-value of the j-th station of 

the sample size N .. To take into account the differ­
) 

ent sample size, which det~rmines the information con-

tent in the r 1 ,j-estimates, a weighted mean ri may be 

used, with N. -
J 

1 as the weights, so that 

n 
I (Nj - l)r . 

r* j=l 1,) 
= 1 n 

I (N. - 1) 
j=l J 

Similarly, the variances of 

by using the weights N. -
J 

average sample size as Na 

equation 

-var r 1 

(2-17) 

r
1 

.'s are computed either 
,J 

and ri, or by using the 

1 and r l' in the general 

(2-18) 

1 n n n 
[ I + 2 I I var rl = "2 var r 

1 'j j=l j=l i =j + 1 n 

which gives 

var r
1 

with 

r .. 
lJ 

var r 1 
n [1 + r ij(n- 1)) 

2 n n 

.....,c-=---=-~ · l I L r . . 
n n - i=l i=l lJ 

COV r 1 , j r I . ]. 
, 1 

(2- 21) 

(2-22) 

(2-23) 

in which rij = the e~timate of pij of Eq . 2-20. For 

var r 1 = var r
1
/ne, Eq. 2-22 gives 

( 2-24 ) 

Applloach by detenm-il-ung .the val{)ance. o6 111 n~Clm 

~ 6nequen'if ~~b~on. The variance of r
1

. esti­

mated in the open-series approach, with the estimat ed 
mean and variance of a normal variab l e, is [ 2) 

N
3 

- 3N
2 

+ 4 
var r 1 

0 0 

(2-25) 

in which N
0 

the length of a unique series which will 

have the same variance of r
1 

as then space-time depen­

dent series of a region. From Eq. 2-25 a value N
0 

can 

be obtained which should always be greater than either 
Na' the average size of n series , or N, the size of n 
series of equal length, 

N n N 
o e e (2-26) 

with ne the equivalent number of independent series 

in the region, and Ne = the mean sample size of all n 

series, for Ne to correspond to independent series, 

then 

var r
1 

(2-27) 
or 

var ri " fi var r\,j 
e 

Given Ne as the effective average length of n series in 

(2-19) an area, then Eq. 2-27 permits the computation of ne ' 

as the effective number of independent series in the 
The correlation coefficient pij between the first 

serial correlation coefficients, r 1(x) and r 1 (y), of 

the two series x and y, are given by [2, page 11) 

N+2 2 
N-T Pxy 

2 2 

{ 

N(N-2)[r1 (x) + r 2(y)) } 

l + 2(N+2) (N+4) (~-20) 

in which N ~ the sample size and p = the lag-zero xy 
correlation coefficient between the x and y series. 
The correlation coefficient p . . is estimated by the 

lJ 
sample value r .. obtained in replacing p by r in lJ _ xy xy 
Eq. 2-20. The variance of r 1 is then 

9 

region . 

The value N
0 

= neNe represents the sample size of 

a unique independent series for the determination of 
tolerance limits for the average spectral variance 
densities. 

A still simpler way to determine neNe is by using 

the Fisher z-transforms of r
1 

values as 

1 1 + rl 
z = ln 

2 ~ (2-28) 

The n values of z give the variance of z by [2) 
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1 var z • iiN 
e e (2-29) 

or 

n e = N 
1 

e var z 
(2-30) 

This simple method is used i n this paper to determine 
the neNe values for the 24 cases (four variables and 

six areas), with the assumption that r
1 
's are so small 

that the difference between Ne and either Na (average 

sample size) or N (individual sample sizes) may be 
neglected. In general, an approximation toNe for the 

first-order Markov model is 

N 
e 

N (1 -

(1 + 

For r
1 

• 0.20, Ne 0.90 N. 

r 1 ~ 0.10, Ne ~ Na; for r 1 > 

used to f i nd Ne' and then ne 
Eq. 2-30 . 

(2-31) 

For very small r
1 

(say 

0.10, Eq. 2-31 should be 

can be found from 

Ve..teltmi.ruz..t.ion o6 .tote~ta.nc.e. ti.m.U6. The distribu­

tion of individual estimates, g(f), is chi-square with 
EDF • the number of effective degrees of freedom. Tite 

mean val ues of g(f), determined by 

-.-- 1 n 
gC£> = n L &iCf> 

i•l 
(2-32) 

may be approximated by the normal distribution, when 

EDF of L g. (f ) 
1 

is at least 30. Then the variance of 

the mean of g(f) becomes 

var g (f) va r g (f) 8 = (2-33) 
"e EUF . n e 

If m = N/4 is chosen, then EDF = 3.7 x 4.0 a 14.8 
when the distribution is ~lose to normal. If the 
Parzen's smoothing function, Eq. 2-9, is used then 

var g(f) = 0 ·
54 

ne 
(2-34) 

with the 95 percent tolerance limits of standardized 
normal variables (t ~ 1.96) given by 

10 

or 
2. 00 + 1. 44 

-,rn 
ne 

(2- 35) 

(2-36) 

Tolerance limits of Eq. 2-36 should be used in the 
analysis of the average spectral graphs in further i n­
vestigations only for the central ordinates of esti -

mated g(f), while for their end ordinates of spectral 
density graphs the corrections (the larger t olerance 
limits) are: 

2 . 00 + 1. 44 12 
lil e 

(2-37) 

because of a further loss of degrees of freedom in 
the estimation of end densities. 



Chapter Ill 
RESEARCH OAT A ASSEMBLY 

This chapter refers to the ~election of variables 
in the study of fluctuat ions of wet and dry years, and 
part icularly to the division of the United States 

. (excluding Al aska and Hawaii ) into six areas. 

3- 1 Selection of Variables 

As shown in Introduction, four variables of 
annual series are investigated: 

(1) P1, the series of annual precipitation, 

inferred by the anal ysis of data to be consistent (no 
apparent systematic errors) and homogeneous (negligi­
ble man-made influences or natural accidental 
disrupt ions); 

(2) Q1, the seri es of annual runoff, selected by 

criter ia described in papers of the same title [1, 2) 
as t his paper; 

(3) P2, the series of annua l precipitation, 

inferred to be either inconsistent or nonhomogeneous; 
and 

(4) Q2, the effective annual precipitation, 

obtained from the Q1 series by P 1 - Q2 = Q1 • 61~, or 

Q2 = P - Q1 • AW, where 6W = the change at the end of 

each water year i n the total water stored in a river 
basin above t he gauging station of Q1 [1] . 

Data selected for this st udy covers the continen­
tal USA except Alaska. Basically all the precipita­
tion and runoff stations of l ongest record satisfy the 
prescribed selection criteria [1]. Sample sizes vary 
from N • 35 to N = 150 for annual precipitation P

1 
and 

P2 series, and N = 30 to N = 97 for annual runoff Q
1 

series and effective precipitation Q
2 

series. The 

criteria used in selecting the P
1 

and Q
1 

series for 

t he Nestern United States in Reference [1) were 
extended for the select ion of series in the Eastern 
United St ates. 

3- 2 Selection of Six Investigation Areas 

The maps of the average annual precipitation, m~an 
annual lake evaporation and the average annual runoff, 
published in the l~ater Atlas of the United States, by 
the Water Information Center, Inc., were used to 
deliniate the six areas according to precipitation, 
evaporation, and runoff characteristics. The basic 
criterion in separating these areas was to have within 
each area the approximately similar climatic condi­
tions , though the orographic local differences made i t 
difficult to car ry out this criterion consistently for 
each area. Figures 3-1, 3-2, and 3-3 show these six 
areas. 

Fig . 3-1. Average Annual Precipitation for the United Sta~es Based on 40-year Period. (After U.S. Department 
of Agriculture, "Climates of t he United States. ") 
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Fig. 3-2. Mean Annual Lake Evaporation for the United States. Lines Show Mean Annual Lake (free-water) 
Evaporati on in Inches Based on Period 1946- 1955 . (After "U.S. Weather Bureau Technical Paper 37. ") 

..-------- ,. .,,. ..,. 

Fig. 3-3 . 

-i-----r··--~--~-----·-~---~--;---....:, 

( 

Average Annual Runoff for the United States . (After U.S. Geological Survey . )· Lines Show Average 
Annual Runoff in Inches. The 5-, 15-, and 30-in. Runoff Lines have been Omitted in Western United 
States to Prevent Crowding of Map Detail. 
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3-3 Brief Description of Areas 

Area I covers USA from the West Coast to longitude 
117", and from latitude 35" to the Canadian border. 
Area II covers the western part of the US, from longi­
tude 117" to longitude 104", and from Mexico to Canada 
(basically the dry areas west of the Rocky Mountains, 
the Rocky Mountains, and part of the plateau east of 
them) . Area III covers the USA between the longitudes 
104" and 94° (basically the central part of USA along 
the broad valleys of the Mississippi and Missouri 
Rivers and some of their major west tributaries). 
Area IV covers the Southeast of USA between longitude 
94° and the Atlantic Ocean, and the Gulf of Mexico and 
latitude 36.5". Area V covers the north-central part 
of USA between longitudes 94" and as• and between 
latitude 36.5° and the Canadian border. Area VI covers 
the northeastern part of USA, east of longitude as• 
and north of latitude 36.5°. 

The basic characteristics of annual precipitation 
(mean, minimum, and maximum) and annual runoff (mini­
mum and maximum) for the six areas given in Tables 3-1 
and 3-2,respectively. 

Tabl e 3-1. Characteristics of Annual Precipitation 
of Six Areas 

Mean Annual 
Area Precipitation ~tinimum ~taxi mum 
No. in Inches In. Location ln. Location 

I 23 . a in. 5 Southeast 140 Northwest 

II 14.4 in. 5 Southwest 50 Northwest 

III 23.6 in. IS Northwest 45 Southeast 

IV 51.1 in. 45 North & ao North 
South 

v 34.9 in. 25 Northwest 50 South 

VI 41.1 in. 30 Northwest so North,East 
& South 

Table 3-2. Characteristics of Annual Runoff 
of Six Areas 

A.rea Minimum Maximum 
No. Inches Location Inches Location 

I 1 Central 80 West Coast 

II 1 Central 40 West 

III 1 Central 20 East 

IV 5 South 40 Northeast 

v 5 West 20 South 

VI 10 Northwest 40 Northeast 

3-4 Reasons for Using Areas 

The first objective of this paper is to investi­
gate whether it can be reasonably inferred that basic 

hydrologic variables of annual precipitation and 
annual runoff are tempolt.alt.y 4.t.ILUcna.Jr..y 4tcc.h.a.4.Uc. 
pMCM4M. Tempclt.alt.y 4:t.a..t.,Wna/Li..;ty is conceived of in 
this text as s t ationarity in processes extending only 
about 150-200 years both into the past and into the 
future from the present. It is not considered valid 
for longer periods. By investigating six different 
areas of USA, rather than the total USA area, it is 
felt that a better insight could be obtained as ~o 
whether differences between the areas can be ascribed 
only to the inevitable sampling fluctuations resulting 
from the limited sample sizes of the series. Further­
more, it is hoped to demonstrate that the differ·ences 
in climate, such as humid, semi-humid , semi-arid and 
arid climates, do not significantly affect the basic 
conclusions about this temporary stationarity. 

The second objective of the study is hopefully to 
demonstrate that the annual precipitation process is 
an independent, temporarily stationary process , or 
very close to it, in the above sense of tempclt.alt.y 
4.t.ILUcn~y. The division of USA i nto six areas, 
approximately based on the general climate, should 
answer the question whether the type of climate influ-

~ ences the degree of closeness to the independent, 
temporarily stationary pr ocess. Several other aspects 
of hydrologic stochastic processes of annual values 
may be investigated by comparing their properties for 
stations inside large but adjacent areas. 

3-5 Preparation of Data on Tapes 

Annual series data for each area and for each of 
the variables: the homogeneous precipitation (P1), 

the runoff (Q
1
), the nonhomogeneous precipitation 

(P2), and runo£f corrected for carryover (Q2) as the 

effective precipitation, were taken from the existing 
magnetic tapes at Colorado State University for each 
of these variables, and separately for the West and 
the East of the United States. The data was first 
examined by Special Programs to check whether there 
had been any change in the location of any station. 
Then all stations were classified into their six geo­
graphical areas, as described in Section 3-3 of this 
chapter, and series of four variables were recorded on 
six new magnetic tapes, one for each area, with a 
sequence of four segments: P1, Q1, P2, Q2 on each 

tape. The number of annual series in each area for 
each variable is given in Table 3-3. 

Table 3-3. Number of Stations Series 
for Each Variable and Each Area 

AREA 

Variable I II III IV v VI 

pl 239 3ao 444 222 231 343 

Ql 166 156 85 7a a a 175 

p2 77 132 204 175 155 176 

Q2 166 156 as 79 a9 173 

Most of the data were updated to the year 1965, 
and a few corrections in location were made. 

13 



Chapter IV 
ANALYSIS OF COMPUTATIONAL RESULTS 

The computational resul ts are analyzed in this 
Chapter f or t he average var iance density spectra of 
invest igated four series P1, P2, Q1, Q2, and for t he 

six areas in the United States. The variance densities 
for eleven frequencies (0, 0 .05, 0.10, ... , 0.45, and 
O.SO) are computed for each individual series . Then, 
the n variance densities for the n areal series, for 
each frequency, are averaged to produce the 24 average 
variance- density spectra (four variables multiplied by 
six areas) . 

Before the average spectra are analyzed for each 
of the four variables (P1, P2 , Q1, Q2), and in turn 

for each of the six areas (Nos. I, II, I I I, IV, v, VI), 
the auto-correlation and cross-correlation properties 
of these 24 cases are pr esented and discussed . This 
was considered necessary for determining the pr oduct 

f = m 
o.2 n 

0.1 

0 
-0.4 -0.2 

02 

0 

m 
f=-n 

--.. I I 

0 

PI 
-Area l , r1= 0 .0832 

- Are a li, r,= 0.0518 

···- Aream,f1=0.04 7 5 

- -·· Area !7, r1 = 0.0135 

.. ····• Area :iC., " = 0.0138 

--- Area JZI, " = 0 .0504 

02 0 .4 0.6 

r-, 
: : Ql 
; 

~ -~ 
I 

·-··' 1"-l .. 
- Area I,r1 : 0.1686 

- Areo n, r1: 0.1741 

--- Area m, r, =0.2178 
r·~ I 

j i-·~ ~···~ -- Area IS!: , r1 = 0.1852 . ' :-···· : 
r--f~ : :·-~---- Area ll:, r1 = 0.24 91 

i . . · j l i - - Area :21, ~ = 0.1228 
I • 

L-' ~ ... 
I . 

(neNe) of the number of equivalent, spacially i n­

dependent st ations (n
0
), mul tiplied by the ef fective 

time independent sample size (Ne)' for each area and 

in turn for each variable. The values n and N then 
e e 

serve for the various computations but particularly 
of tolerance limits for the average variance density 
spectra. 

4-1 Determination of the Effective Numbers of ne 
and Ne 

Frequency histograms of the Fisher z 1 t·rans forms 

of the estimated first serial correlation coefficient, 
r 1, are given in Fig . 4-1 . For each of the four 

m 
f=n 

P2 
0.2 - Area I, r1 = 0.0 7 33 

... , 
I ' • r··, 
I I : 

- Area II, r1 = 0 .0771 ·- .. J .. ·! 

0.1 

.... Area m, r,: 0.0567 

--- Area m:, if1 = 0.03 72 

·-··· Area ::SZ:, r1 = 0.0054 

- -- Area :lri I r, : 0.0193 

0 
-0.6 -0.4 - 0.2 

f= m 
n 

.. .., 
: : 

I 
··· ' 

0 

0 .2 r-·1_J -
r1 

0 . 1 

l I 
I I 

' I 
J , I 

r · L_, 
' I 

0.2 0.4 

Q2 
Area I, r = 0. 1672 

Area n, r :0. 1529 

Area m, f = 0 .2137 

Area m:, r :0.19 17 

Area :2:, r =0.24 46 

Area :szr, r = 0.0812 

ru·~ r, 

0 0.2 0 .8 0 
0 02 0.6 0.8 

I' lg. 4-1. Frequency distribution histograms of the first serial correlation coefficients, r 1, of 

variables P 1, P 2, Q1, Q2 (t he f our gr aphs), and in t urn a separa.te fr equency histogram 

t he six areas of the Uni t ed St ates (I, II, II I , IV, V, VI) . 
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variables P1, P2, Q1 Q2, there are six histograms, 

one for each area. The r 1-values are first estimated, 
then transformed into the Fisher z1-variable values 
by using Eq. 2-28. 

Two approaches can be used in practice to de­
termine the standard deviations of frequency distri­
butions of the z1-variables: 

(1) A direct computation of vat z1 from the n 

values of each variable: P1, P2, Q1, Q2, and in turn 

for each of the six areas. This approach is used in 

this study to compute sz ~ lvar z1 . 

(2) An indirect computation by the graphical 
estimation, in plotting the frequency curves of z1 
in Cartesian-probability scales, in drawing by a 
visual inspection through the plotte~ points, the 
straight lines and in finding the standard deviation 
sz. This approach is not used in this study, however. 

Since the z 1-vari~bles are normally distributed, the 

straight l ine fits to the plotted frequency distri­
bution points (usually to the points between 10\ and 
90\ of frequencies) enable the estimation of the 
standard deviations sz of the z1-transforms for the 

24 variables. For the probabilities on the straight 
lines of 84.13% and 15.87\, the differences between 

2 
their z1 values give 2sz, with var z1 = sz. 

By using Eq. 2-29 , neNe is obtained for a given 

var z1. For Ne = Na (this is the case for the average 

sample size of n series, if r 1 is very small, say 

r
1 

< 0 .10), then ne = (neNe)/Na. For r 1 > 0.10, Eq. 

2-31 gives Ne for N = N
8 

, and then ne is computed. 

Table 4-1 presents the results for the four variables 
(P

1
, P2 , Q1, Q2) and in turn for each of the six areas. 

These estimates are then used to determine the tolerance 
limits of zl. 

4-2 Tolerance Limits for the i 1-Transforms of the 

Average First Serial Correlation Coefficients 

With the r 1-values transformed into the Fisher 

z1-values , with z1 normally distributed, the expected 

value of zl and the upper and lower tolerance limits 

are determined for the estimates of the zl-variables. 

The expected value of rl is 

Er1 
1 

- nN 
e e 

(4-1) 

with the expected value of zl resulting as 

1 1 + Er1 Ez
1 = 2 ln 

1 - Er1 

(4-2) 

and the upper and lower tolerance limits for the 95\ 
probability level computed by 

1.96 s 
UTL Ez 1 + 

z 
z ne 

(4-3) 

and 
1.96 sz 

LTLz .. Ez
1 

- n e 
(4-4) 
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The four values, Er1, Ez1, UTLz, and LTLz, for each 

of the four variables (P
1
, P2, Q

1
, Q2) and each of the 

six areas, are given in Table 4-1. 

4-3 Results from the Study of the Fisher z1-

Transforms of the Average First Serial 
Coefficients, r 1 

The basic results drawn from the numbers in Table 
4-1 are presented in Fig. 4-2. The values of z1 (the 

Fisher z
1
-transform of the first serial cor-

relation coefficient, r 1) for the four variables (P1, 

P2, Q
1

, Q2) and for the six areas of the United States, 

are compared with the upper tolerance limits for i 1, 

given as UTLt , for the 95\ tolerance probability 

level. For these 24 cases the positive values of the 
tolerance intervals are shaded in order to emphasite 
the differences between the computed z1 and UTLt-values. 

Both the homogeneous annual precipitation series 
(P1) and the non-homogeneous annual precipitation 

series (P2) show the i 1-values to be mostly above the 

upper tolerance limits of zl • with four out of 12 

values either c lose to these limits (two values of P1) 
or below these limits (two values of P2) . 

Both the annual runoff series (Q1) and the ef­

fectlve annual precipitation series (Q2),obtained di­

rectly from the Q
1
-series, have in all the 12 cases 

(two times six areas) the zl-values located signifi­

cantly above the upper tolerance limits, UTLz . 

The P1- and P2-series are close to be independent 

time processes, with the maximum i 1 being 0.0832 for 

Area I of the P
1
-variable, and the next two highest 

values of z
1 

being 0.0734 and 0.0772 for Areas I and 

II of the P2-variable. The positive values of z1 may 

be variously explained. Among the most important 
factors are: 

(1) Annual values are obtained by cutting the 
precipitation process at a given date, with the daily 
precipitation of the previous and the succeeding days 
to that date being time dependent process . 

(2) Inconsistency and non-homogeneity in data may 
be unavoidable, and as such imbedded in the annual 
series. Various changes in observations (definition 
of trace values of precipitation, changes in the verti­
cal and horizontal gauge positions,in instruments, in 
the methods of determining the catch of precipitation, 
in gauge surroundings, etc.) produce these non-homo­
genety and inconsistencr (systematic errors). They 
tend to increase their r 1 values. 

The Q1- and Q2-series are, on the average, de­

pendent time series. The basic reasons for the positive 
auto-correlation, with the %1-values ranging between 

0.0814 (Area VI of Q2) to 0.2545 (Area V of Q1), are: 

(1) Changes in water storage capaci ties in river 
basins from year to year, so that evaporation, 



Table 4-l. Properties of the Average First Serial Cross- Correlation Coefficient, - and its transform, -rl, z1 ' 
for Four Variables (P1, P2, Q1, Q2) and Six Areas of USA 

A R E A w I T H I N U S A 
Variable Parameter 

I I I I I IV v VI 
n 239 380 444 222 231 345 
N e 58 .1 54.4 60.9 62.7 60.8 57.5 

r1 0 . 0832 0.0518 0.0475 0 .0135 0.0138 0.0504 

zl 0.0834 0.0519 0.0475 0.0135 0 . 0138 0.0504 

neNe 285.8 494.2 467.6 437.0 388.5 508.5 

pl sz 0.05946 0.04512 0.04640 0.04800 0.05093 0.04448 

n e 4.92 9.08 7.68 6 .97 6.39 8.84 

er1 -0 . 00351 - 0.00202 - 0 . 00213 -0.00229 - 0. 00257 -0.00197 

Ei 1 -0.00350 - 0.00202 - 0 . 00214 -0. 00229 -0.00257 -0.00197 

liTLZ +0 .01825 +0.00772 +0.00970 +0. 01121 +0.01305 +0.00790 

LTL z -0.02525 -0.01176 -0.01398 -0 .01579 -0 .01819 -0.01183 

n 77 132 204 175 155 176 
N 56.4 52.3 59.1 59 .9 61.2 63.4 e 
rl 0. 0733 0 . 0771 0.0567 0.0372 - 0.0054 -0.0193 

zl 0.0734 0.0772 0.0568 0.0372 - 0.0054 -0.0193 

neNe 227.6 470 . 0 352 . 5 364 .6 377.3 514. 2 

p2 sz 0.06673 0 . 04627 0 .05349 0 . 05259 0.05169 0.04423 

n e 4.04 8.99 5 .96 6.09 6. 16 8 .11 

er1 -0.00439 -0.00213 -0.00284 -0.00274 -0.00265 -0 .00194 

Ei1 
-0.00439 -0 . 00213 -0. 00284 -0.00274 - 0.00265 - 0.00194 

UTLZ +0 . 02798 +0.00796 +0.01475 +0.01418 +0 .01380 +0.00874 

LTL z 
- 0.03677 - 0 . 01221 -0 .02043 -0 . 01867 -0.01910 -0. 01263 

n 166 156 85 78 88 175 
N e 40.4 41.8 38.0 37.5 39.5 43.4 

rl 0.1686 0.1741 0.2178 0.1852 0.2491 0.1228 

zl 0.1702 0.1759 0.2214 0.1874 0.2545 0 . 1234 

n N 
e e 130.9 247.1 214.7 146.1 133.1 183.1 

Ql sz 0.08843 0.06401 0.06873 0.08361 0.08768 0.07452 

n e 3.24 5.91 5.65 3.89 3.37 4. 22 

er1 -0.00764 -0. 00405 -0.00466 -0.00684 -0.00751 -0.00546 

Ei1 -0.00764 -0.00405 -0.00466 -0 . 00684 -0.00751 -0 . 00546 

liTLZ +0.04586 +0.01718 +0.01919 +0.03528 +0.04348 +0.02915 

liTLZ -0. 06113 -0 . 02528 -0 .02850 -0.04897 -0.05851 - 0.04007 

n 166 156 85 7~ 89 173 
N e 36. 1 38.0 33.6 33.1 35.3 39.2 

rl 0.1672 0 .1529 0.2137 0.1917 0.2446 0.0812 

z1 0.1688 0.1541 0.2171 0.1941 0.2497 0.0814 

neNe 108.4 214.3 182.1 126.8 119.3 173.6 

Q2 sz 0.09738 0.06879 0 . 07472 0.08988 0 . 09273 0.07656 

n e 3.00 5.64 5.42 3.83 3.38 4.43 

er1 -0. 00923 -0. 00467 -0.00549 -0.00789 -0 . 00838 -0.00576 

ei
1 

-0.00923 -0.00467 -0 . 00549 - 0.00789 -0.00838 -0.00576 

liTL z 
+0.05440 +0. 01924 +0.02153 +0.03811 +0 . 04539 +0. 02811 

LTLZ -0.07285 - 0.02857 -0.03251 -0 .05388 -0.06215 -0.03963 
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Fig. 4-2. The Average Fisher ~1-Transforms, for the Estimates of the Average First Serial Correlation 

Coefficients (heavy lines) of the Four Variables (four graphs) and the Six Areas of the United 
States, Compared with the Upper Tolerance Limits (dashed lines)at 95% Tolerance Probability Level. 

evapotranspiration and runoff process of any year 
depend on the history of water storage and depletion 
in previous years. 

(2) Same factors, similar as for the precipi­
tation, namely the effect of the year beginning date 
cutting a continuous dependent process , and of in­
consistency and non-homogeneity (man-made changes 
mostly) . 

4- 4 Computation of Tolerance Limits for the Average 
Regional Variance Densities for the Time In­
dependent Normal Processes. 

By using the ne-values taken from Table 4-1, the 

tolerance limits, g1 2(f), of the average spectral 

densities, g(f), are' computed by Eq. 2-36 for the 

spectral densities Nos. 2 through 10 (central ordinates 
of the spectra) , and by Eq. 2-37 for the densities 
Nos. l and 11 (the end ordinates of the spectra). 
Equations 2-36 and 2-37 are applicabl e under the 
following conditions : 
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(1) The g(f)-values are normally distributed 
around Eg (f) = 2. 00. 

(2) The estimates of the sampling variance of 
g(f), by using the expression: var g = 8/EDF, with 
EDF • the effective number of degrees of freedom 
determined by the approximate Parzen's approach in 
using m = N/4 of the estimated correlogram rk-values 

in the computation of the g(f)-values, are unbiased 
and sufficiently· efficient. 

(3) That Eq. 2-37 is a good approximation for 
the estimates of the end spectral densities. 

Since ne varies between 3.00 (Q2-variable, Area I) 

and 9.08 (P1-variable, Area II) in Table 4-1, and 

since EDF ~ 14.8 for the Parzen's smoothing function 
of estimates of spectral densities, then (EDF ne) is 

between 44.4 and 135. Therefore, the normal distri­

bution is applicable for the distribution of g(f), 
and for determining its tolerance limits at the 95 
percent probabil ity level. 

:I 
i 
' I •, 



Table 4-2 presents the upper and lower tolerance 
limits at the 95 percent probability level for the 

average value g(f), of the estimated spectral densi­

ties, g (f) , for each f. The UTL2_10 and LTL2_
10 

and 

the limits of the estimated central spectral densities 
(namely the ordinates Nos. 2, 3, ... , 10), while 
UTL1, 11 and LTL1, 11 are the limits for the end ordi -

nates Nos. 1 and 11. 

Figure 4-3 through 4-6 give the averages of the 
estimated spectral densities for the four variables: 
P
1

, P
2

, Q
1

, Q2 , and in turn for each of them of the 

six areas of the United States, as the left graphs 
of figures, respectively. Each graph contains the 
tolerance limits at the 95 percent probability level, 
obtained by Eqs . 2-36 and 2-37. For the Q1- and Q2-

variables, the curves of the fitted autoregressive 
models are also plotted, either as the first-order 
model, AR(l), of Eq. 2-10, or as both AR(l) and the 
second-order model, AR(2), of Eq. 2-12. Simultane­
ously, the right graphs of Figs. 4-3 through 4- 6 give 
the corresponding correlograms for up to k = 7, for 
each of the 24 spectral graphs given on the left side 
of these four figures. 

4-5 Results from the Study of the Average Spectra 

The spectra of Figs. 4-3 and 4-4 clearly show 

tnat nearly all the g(f)-values,as the averages of n 

estimated g(f)-values, from the n station series of 
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P1 and P2, and for each of the six areas, are con­

fined within the tolerance limits. No spectrum, 
except that of P2 for Area II, has density values out-

side the tolerance limits. It can be concluded from 
this spectral analysis that the annual homogeneous pre­
cipitation series, P1, and even the annual-nonhomo-

geneous series, P2 , are i ndependent time series, or at 

least very close to be independent . 

In the analysis of z1, only the rlestimates of 

the n stations for each area and each variable were 

used, while the g(f) values are obtained from the N/ 4 
serial correlation coefficients , rk. Giving a proper 

emphasis on the spectral analysis, and taking into 
account the fact that the tolerance limits are wider 
for the end ordinates of estimated spectra than for 
the central ordinates, the annual precipitation series 
may be safely considered as an independent, stationary 
stochastic process. This is valid at least for the 
periods of time equal to the lengths of historic 
samples. No evidence exists in all the spectra of any 
periodicity, either on the frequency of the sunspot 
cycle of about 11.3 years, or i ts double cycle of 22.6 
years, or any other cycle. It is evident that neither 
the inconsistency (nearly always present in a small 
degree in annual precipitation series) nor the non­
homogeneity, nor the year end dependence of precipi­
tation process, create a sufficient dependence in 
annual precipitation series to question the general 
conclusion of the series independence and its stocha­
stic stationarity . 



Table 4-3. Coefficient of Determination, R2, for the Relationships of the Estimated First Serial Correlation 

Coefficient, r 1, and the Estimates of Mean, x, Standard Deviation, sx, Coefficient of Variation, 

Cv• as well as Relationships Between these Three Estimates 

~ ·-
Variable Relationship 

VS = versus II 

rl vs X 0.0798 0.0020 

rl VS x,sx 0.1132 0.0624 

pl rl vs i,cv 0.1246 0.0352 

X vs s 
X 

0. 7496 0.4693 

x VS cv 0.2404 0.1271 

rl vs x 0.1618 0.0001 

rl vs x,sx 0.1686 0.0086 

p2 rl VS x,Cv 0.1699 0.0184 

i vs sx 0.8301 0.6458 

x vs c v 0 . 3379 0.2071 

rl VS x 0 .0068 0.0000 

rl vs x,sx 0.0276 0.0184 

Ql rl VS i,cv 0.0754 0.0309 

X vs s 0.5965 0.6219 
X 

x vs cv 0.0270 0.0400 

rl VS x 0.0051 0.0000 

r1 vs x,sx 0.0250 0.0185 

Q2 rl vs x,cv 0.1679 0.0838 

i vs s 0.6120 0.6212 
X 

x vs cv 0.0739 0.0406 

The spectra of Figs. 4-5 and 4-6 clearly show 
that they cross the tolerance limits of independent 
time series for nearly all the areas, with their 

average spectral density values, g(f), obtained by 

averaging the n estimated g(f)-values for these n 
stations of the Q1- and Q2-variables. These crossings . 
exist for most of the six areas. The spectra of g(f) 
lead to the conclusion that the two series of annual 
runoff and annual effective precipitation are the 
11.e.d. no.U.e. series (with the averages of &stimated 
densities decreasing with an increase of the frequency). 
In most cases, the fits of the corresponding first­
order autoregressive dependence model , AR(l), or in 
some cases also of the second-order model, AR(2), show 
to be the attractive mathematical models for the 
population processes. The correlograms smoothed by 
the Parzen function produce also the very smooth 
spectra of the ll.e.d. no.U. e. type, as opposed to the wfU.te. 
no.U.e. t ype of spectra for the annual precipitation 
series. 

For all practical purposes, the annual runoff 
series, as well as the effective annual precipitation 
(precipitation minus evaporation) series are station­
ary but dependent stochastic processes. At least, 
they can be considered as te.mpo~t.a~t.y 4tationall.y 
for the sample sizes of available data. These Q

1
-

VALUES F 0 R AREA 
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III IV v VI 
0.0105 0.0191 0.0839 0.0236 

0.0145 0.2356 0.0840 0.0350 

0.0168 0.2396 0.0839 0.0352 

0 . 7588 0.4012 0. 7100 0.3661 

0.0628 0.0187 0.0833 0.0520 

0.0007 0.0091 0.0489 0.0002 

0.0150 0.0946 0.1676 0.0614 

0.0184 0.0897 0.1675 0.0633 

0 . 7524 0.3459 0.6697 0.3959 

(J-.1660 0.0008 0.0606 0.0470 

0.0002 0.0053 0.0003 0.0052 

0.0128 0.0215 0.0006 0.0055 

0.0694 0.0091 0.3335 0.0155 

0. 7284 0.7218 0.6527 0.6986 

0. 1622 0.0000 0.0176 0.2233 

0.0018 0.0040 0.0000 0.0058 

0.0061 0.0131 0.0154 0.0059 

0.0240 0.0042 0.3008 0.0322 

0.7493 0.7236 0.6475 0.6977 

0.1850 0.0000 0.0276 0.0285 

and Q2-series do not show any significant periodicity 

of the sunspot cycle (11.3 years) , or its double 
cycle (22.6 years), or any other cycle. 

4-6 Relationships Among the Estimates of Parameters 
of Four Variables for Six Areas 

Table 4-3 gi ves the coefficient of determination 

(R
2
), either for the simple correlation (for two esti­

mates of parameters and linear simple correlation), or 
for the multiple correlation (for three estimates of 
parameters and linear multiple correlation). First, 
the estimates of the first serial correlation coef­
ficient, r 1, for each series P1, P2, Q1, Q

2
, and for 

each area, are linearly correlated with x (the mean of 
the historic series), then with x and s (s • the 

X X 
stand~rd deviation of historic series), and finally 
with x and Cv (Cv = the coefficient of variation of 
h . . . ) 2 
~stor~c ser~es . The R -values are given in Table 

4-3 in the first three rows for each of the four 
variables (P1, P2, Q1, Q2). Then, the estimates of 

the mean (x) are correlated with the estimates of the 

standard deviation s , and then with c , and R2 are 
X V 

given in the forth and fifth rows of each variable in 
Table 4-3. 

I" 
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Figure 4-3. Average Spectra (The Full Lines of the Left Graphs) with the 95\ Tolerance Limits (The Dashed 
Lines of the Left Graphs), and the Average Correlograms (The Right Graphs), for the Six Areas 
{1 , 2, 3, 4, S, 6) of the United States for the n-Series in Each Area of the Annual Homogeneous 
P 1- Precipitation Series. 

First Part of Fig. 4-3. Areas 1, 2, 3. 
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Figure 4-3. Conti nued. Second Part of Fig. 4-3 , Areas 4, S, 6. 
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Figure 4-4. Average Spectra {The Full Lines of the Left Graphs), with the 95\ Tolerance Limits (The Light 
Dashed Lines of the Left Graphs), the Fitted First-Order, AR(l), Autoregressive Model, (The 
Heavier Dashed Lines of the Left Graphs), and the Average Correlograms (The Right Graphs) for the 
Six Areas (1, 2, 3, 4, 5, 6) of the United States for the n-Series in Each Area of the Annual 
Non-Homogeneous P2-Precipitation Series. 

First Part of Fig . 4-4, Areas 1, 2, 3. 
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Figure 4-5. Average Spectra (The Full Lines of the Left Graphs) with the 95\ Tolerance Limits (The Light 
Dashed Lines of the Left Graphs), the Eitted First-Order, AR(l), and the Second-Order, AR(2). 
Autoregressive Models (The Heavier Dashed, or Heavy Point Lines of the Left Gr aphs , Respectively) , 
and the Average Correlograms (The Right Graphs for the Six Areas (1, 2, 3, 4, 5 , 6) of the United 
States for the n-Series in Each Area of t he Annual Q1-Runoff Series . 

First Part of Fig. 4-5, Areas 1, 2, 3. 
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Figure 4-5. Continued . Second Part of Fig . 4-5, Areas 4, 5, 6. 
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Figure 4-6. Average Spectra (The Pull Lines of the Left Graphs) with the 95\ Tolerance Limits (The Light 
Dashed Lines of the Left Graphs), the Fitted-First Order, AR(l), and the Second-Order, AR(2), 
Autoregressive Models (The Heavier Dashed, or Heavy Point Lines of the Left Graphs, Respectively) , 
and the Average Correlograms (The Right Graphs for the Six Areas (1, 2, 3, 4, S, 6) of the United 
States for the n-Series in Each Area of the Annual Q2-Effective Precipitation Series . 

First Part of Pig. 4-6, Areas 1, 2, 3. 
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The relationships of r 1 versus x , or r 1 versus i 

and sx, or r 1 versus x and Cv, show the R2-values (or 

the explained variance by the linear correlation) to 
range between zero and 24% for P1, between zero and 

17% for P2, between zero and 8% (except one value of 

33%) for Q1, and between zero and 8% (except one value 

of 17% and another of 30%) for Q~, in each of four 
2 cases (P 1, P 2, Q1, Q2), for a total of 18 values of R . 

The only significant correlation found is between 

i and sx (the estimates of the mean and standard 

deviation are correlated), because whenever xis large, 
also s is large, or the opposite . However, when x is 

X 2 
correlated with C = s /x, the R -values are much 

V X 

smaller then those for sx. 

The R2-values can not be considered as signifi­

cant, except for the i versus sx relationships. The 

estimates of the first serial correlation coefficient, 

r 1, may be considered as independent of the estimates 

of the mean, x, the standard deviation, sx' and the 

coefficient of variation, Cv . However, the relation­

ships between the estimates x and sx are very signi­

cant. This conclusion is supported by many compu­
tations of the past. 

4-7 A Retrospective View at the Reliability of 
Results 

The Parzen smoothing funct i on has a bias which 
depends upon the second derivative of the actual 
spectrum. This derivative is very smal l in a region 
where the spectrum is nearly a straight line and very 
large near a sharp peak. Since the spectral estimates 
of the series of annual precipitation are serially 
corr elated only to a very small degree (close to zero), 
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these estimates represent the spectra which are likely 
to be close to a horizontal line. Thus, the Parzen 
smoothing function has a small bias most of the t ime . 
Even for the dependence in the annual runoff series 
of the order of r 1 = 0.10 - 0.20, th~ bias is small. 

The Parzen smoothing function is choosen for the use 
in this study since it yields no negative values of 
spectral estima·tes. 

It is generally known (particularly for the 
first-order autoregressive processes [10]) that the 
increase of the correlogram truncation value m in 
computing the spectral densities will increase the 
variance of the estimates and decrease the number of 
degrees of freedom of their distribution. It results 
in a wider tolerance interval for the estimates , or 
a loss of confidence i n the estimates. Furthermore, 
as it is generally known, an increase in the cor­
relogram truncation value m will decrease the bias of 
the estimate. Most of the time, and for a single 
spectral estimate, the truncation value m is chosen as 
an average value for which, hopefully, neither the 
tolerance interval nor the bias are t oo large. For 
the purpose of the analysis in this paper, the bias 
in the spectral estimates was kept to a minimum. How­
ever , the variance of the estimates is large, but this 
is not considered i mportant for the major assumption, 
namely that each of the n spectral estimates for the n 
area station series are considered as estimates of the 
same spectral density of a given frequency. Thus, by 
combining t he n estimates into the average estimate, 

g(f), the variance of this average estimate is greatly 
reduced (especially for the large number of station 
series of n = 200-400, with the equivalent ne = 3- 9 

for the space independent series). To reduce the bias 
in the estimates, the truncation value m is taken as 
high as feasible without jeopardizing the covariance 
esti mates. The truncation value m is taken as one 
fourth (1/4) of the sample size, N. To be consistent 
from sample to sample, this ratio is kept constant for 
all the series, although the absolute truncation value 
m changes from sample to sample depending upon the 
sample size. 



Chapter V 
CONCLUSIONS 

The analysis of a large number of station time 
series of annual precipitation, annual runoff, and 
annual effective precipitation, leads to these basic 
conclusions: 

(1) For all pract ical purposes, the method of 
spectral analysis shows that the annual precipitation 
series in the United States are time independent, 
stationary stochastic processes; at least, they are 
tempo~ 6~~ processes for the periods of 
time of the order of lengths of the available historic 
series. 

(2) The annual runoff series, and from them 
derived annual effective precipitation series (annual 
precipitation minus annual evaporation and annual 
evapotranspiration) in the United States, studied by 
the spectral analysis , are time dependent, stationary 
stochastic processes; at least, they are ~empo~ 
htatiO~ processes for the periods of time of the 
order of lengths of the available historic series. 

(3) The order of the magnitude of the average 
first serial correlation coefficient for the annual 
runoff series for many stations of large areas is 
somewhere between 0.10 and 0. 20-

(4) The major factor responsible for the time 
dependence of annual series of runoff and effe~tive 
precipitation is the change from year to year 1n the 

water volume stored in river basins. 

(5) No significant spectral densities are found 
for any periodicity, particularly for the sunspot 
cycle of 11.3 years or its double value of 22.6 years, 
in annual series either of precipitation or runoff. 

(6) It is safe to project the expectations of 
immediate future , say for the future lengths of times 
at least equal to the lengths of historic series of 
precipitation or runoff, that the expected future 
series of annual precipitation will be very close to 
independent, stationary stochastic processes, and those 
of annual runoff very close to dependent, stationary 
stochastic processes. 

(7) For practical purposes, the simple first ­
order or second-order autoregressive dependence models 
seem to be sufficiently accurate mathematical des­
cription for the annual runoff series. 

(8) By using a very large number of annual time 
series all over the United States, the time-space 
study of these processes for data of a relatively 
short periods of about 30-90 years for various time 
series, should compensate in some degree for the lack 
of very long, instrumentally obtained data on precipi­
tation and runoff. What is not available in time, it 
may be somewhat compensated with the information in 
space, in order to project the near future with a 
sufficient reliability. 

REFERENCES 

1. Yevjevich, V., Fluctuations of Wet and Dry Years , 
Part I, Rest::arch Data Assembly and ~lathe­
matical Models, Colorado State University 
Series of Hydrology Papers, No. l, July 1963. 

2. Yevjevich, V., Fluctuations of Wet and Dry Years, 
Part II , Analysis by Serial Correlation, 
Colorado State University Series of Hydro­
logy Papers, No. 4, June 1964. 

3. Milankovitch, M., Canon of Insolation and the Ice­
age Problem, translated from German by the 
Israel Program for Scient ific Translations, 
Jerusalem 1969: U.S. Department of Commerce, 
Springfield, Va., 484 pages, 1941 . 

4. Vernekar, A. C., Long-period Global Variations of 
Incoming Solar Radiation, Meteorological 
Monographs, U.3. Weather Bureau, Vol . 12, 
No. 34 , 21 pages, 1972. 

5. Broecker, W. S., and J. van Dank, Insolation 
Changes, Ice Volumes, and the 0-18 Record 

29 

in Deep- sea Cores , Reviews of Geophysics 
and Space Physics, Vol. 8 , p. 169-198, 1970. 

6. Chin, W. Q., and V. Yevjevich, Almost-Periodic, 
Stochastic Theory of Cl imatic Changes, Colo­
rado State University Series of Hydrology 
Papers , No . 65 , March 1974 . 

7. Wiener, Nobert, Extrapolation, Interpolation, and 
Smoothing of Stationary Time Series (with 
Engineering Applications), the M.I.T. Press, 
Cambridge , Mass., 1949. 

8. Blackman, R. B., and F. W. Tukey, The Measurement 
of Power Spectra, Dover Publications, New 
York 1958. 

9. Parzen, Emanuel, Time Series Analysis Papers, 
Holden -Day, Inc., San Francisco, 1967 . 

10. Box, G. E. P. and G. M. Jenkins, Time Series 
Analysis, Forecasting and Control, Holden­
Day, Inc., pp. 553, 1970. 



$ 

Key Words: Wet and Dry Years, Annual Precipitation, 
Annual Runoff, Time Series Analysis. 

Abstract: Spectral analysis is applied to annual 
series of precipitat ion and runoff. Precipitation 
series are divided in homogeneous P

1
-precipitation 

and nonhomogeneous P
2
-precipitation. Runoff series 

are either the observed Q1- series, or they are reduced 

to the effective precipitation Q
2
-series (precipita­

tion minus evaporation). Data of annual preci pitation 
and annual runoff of a large number of gauging sta­
tions in the United States divided in six areas are 
used in t hi s study. 

Key Words: Wet and Dry Years, Annual Precipitation, 
Annual Runoff, Time Series Analysis. 

Abstract: Spectral analysis is applied to annual 
series of precipitation and runoff. Precipitation 
series are divided in homogeneous P

1
-precipitation 

and nonhomogeneous P
2
-precipitation. Runoff series 

are either the observed Q1-series, or t hey are reduced 

to the effective precipitation Q2-series (precipita­

tion minus evaporation) . Data of annual precipitation 
and annual runoff of a large number of gauging sta­
tions in the United States divided in six areas are 
used in this study. 

Key Words: Wet and Dry Years, Annual Precipitation, 
Annua l Runoff, Time Series Analysis . 

Abstract: Spectral analysis is applied to annual 
series of precipitation and runoff. Precipit ation 
series are divided in homogeneous P

1
-precipitation 

-· -·- ···----

and nonhomogeneous P
2
-precipitation. Runoff series 

are either the observed Q
1

- series, or they are reduced 

to the effective precipitation Q
2
-series (precipit a­

tion minus evaporati on) . Data of annual precipitation 
and annual runoff of a l ar ge number of gauging sta­
tions in the United States divided in six areas are 
used in thi s study. 

Key Words: Wet and Dry Years, Annual Precipitation, 
Annual Runoff, Time Series Analysis. 

Abstract: Spectral analysis is applied to annual 
series of precipitation and runoff. Precipitation 
series are divided in homogeneous P

1
-precipitation 

and nonhomogeneous P
2
-precipitation. Runoff seri es 

are either the observed Q1-series, or they are reduced 

to the effecti ve precipitation Q2-series (precipita­

tion minus evaporation). Data of annual precipitation 
and annual runoff of a large number of gauging sta­
t ions in the United States divided in six areas are 
used in this s tudy. 



Techniques of spectral analysis are described. 
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